scholarly journals MOF Decomposition and Introduction of Repairable Defects Using a Photodegradable Strut

Author(s):  
Jingjing Yan ◽  
John MacDonald ◽  
Shawn Burdette

Utilizing a photolabile ligand as MOF strut can make a framework undergo full or partial decomposition upon irradiation. For the first time, a nitrophenylacetate derivative has been incorporated into MOF as a backbone linker via PLSE method. The photo-induced decarboxylation of the NPDAC-MOF represents a novel way of degrading a MOF, which provides an innovative approach to formulating photoresponsive porous materials with potential applications in molecular release and drug delivery. When photoactive linker is mixed with non-photolabile linker via partial PLSE, the MOF structure can be retained after irradiation, but with the introduction of multiple defects, offering a new method to create vacancies in MOFs. Defect repair can be achieved by treatment with replacement ligands, the scope of which is an interesting area for developing customizable MOF contents.<br>

2018 ◽  
Author(s):  
Jingjing Yan ◽  
John MacDonald ◽  
Shawn Burdette

Utilizing a photolabile ligand as MOF strut can make a framework undergo full or partial decomposition upon irradiation. For the first time, a nitrophenylacetate derivative has been incorporated into MOF as a backbone linker via PLSE method. The photo-induced decarboxylation of the NPDAC-MOF represents a novel way of degrading a MOF, which provides an innovative approach to formulating photoresponsive porous materials with potential applications in molecular release and drug delivery. When photoactive linker is mixed with non-photolabile linker via partial PLSE, the MOF structure can be retained after irradiation, but with the introduction of multiple defects, offering a new method to create vacancies in MOFs. Defect repair can be achieved by treatment with replacement ligands, the scope of which is an interesting area for developing customizable MOF contents.<br>


Nano LIFE ◽  
2012 ◽  
Vol 02 (01) ◽  
pp. 1230001 ◽  
Author(s):  
HONGQIAN BAO ◽  
YONGZHENG PAN ◽  
LIN LI

Graphene, a two-dimensional nanomaterial reported for the first time in 2004, has been widely investigated for its novel physicochemical properties and potential applications. This review selectively summarizes the recent progress in using graphene-based nanomaterials for various biomedical applications. In particular, graphene-based sensors and biosensors, which are classified according to different sensing mechanisms and targets, are thoroughly discussed. Next, the utilization of graphene as nanocarriers for drug delivery, gene delivery and nanomedicine are demonstrated for potential cancer therapies. Finally, other graphene-based matrices, nanoscaffolds, and composites, which are used in bioapplications, are presented, followed by conclusions and perspective.


2021 ◽  
Vol 21 ◽  
Author(s):  
Madhukar Garg ◽  
Anju Goyal ◽  
Sapna Kumari

: Cubosomes are highly stable nanostructured liquid crystalline dosage delivery form derived from amphiphilic lipids and polymer-based stabilizers converting it in a form of effective biocompatible carrier for the drug delivery. The delivery form comprised of bicontinuous lipid bilayers arranged in three dimensional honeycombs like structure provided with two internal aqueous channels for incorporation of number of biologically active ingredients. In contrast liposomes they provide large surface area for incorporation of different types of ingredients. Due to the distinct advantages of biocompatibility and thermodynamic stability, cubosomes have remained the first preference as method of choice in the sustained release, controlled release and targeted release dosage forms as new drug delivery system for the better release of the drugs. As lot of advancement in the new form of dosage form has bring the novel avenues in drug delivery mechanisms so it was matter of worth to compile the latest updates on the various aspects of mentioned therapeutic delivery system including its structure, routes of applications along with the potential applications to encapsulate variety drugs to serve health related benefits.


Author(s):  
Emily C. Whipple ◽  
Camille A. Favero ◽  
Neal F. Kassell

Abstract Introduction Intra-arterial (lA) delivery of therapeutic agents across the blood-brain barrier (BBB) is an evolving strategy which enables the distribution of high concentration therapeutics through a targeted vascular territory, while potentially limiting systemic toxicity. Studies have demonstrated lA methods to be safe and efficacious for a variety of therapeutics. However, further characterization of the clinical efficacy of lA therapy for the treatment of brain tumors and refinement of its potential applications are necessary. Methods We have reviewed the preclinical and clinical evidence supporting superselective intraarterial cerebral infusion (SSJACI) with BBB disruption for the treatment of brain tumors. In addition, we review ongoing clinical trials expanding the applicability and investigating the efficacy of lA therapy for the treatment of brain tumors. Results Trends in recent studies have embraced the use of SSIACI and less neurotoxic chemotherapies. The majority of trials continue to use mannitol as the preferred method of hyperosmolar BBB disruption. Recent preclinical and preliminary human investigations into the lA delivery of Bevacizumab have demonstrated its safety and efficacy as an anti-tumor agent both alone and in combination with chemotherapy. Conclusion lA drug delivery may significantly affect the way treatment are delivered to patients with brain tumors, and in particular GBM. With refinement and standardization of the techniques of lA drug delivery, improved drug selection and formulations, and the development of methods to minimize treatment-related neurological injury, lA therapy may offer significant benefits for the treatment of brain tumors.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Leela Goel ◽  
Huaiyu Wu ◽  
Bohua Zhang ◽  
Jinwook Kim ◽  
Paul A. Dayton ◽  
...  

AbstractOne major challenge in current microbubble (MB) and tissue plasminogen activator (tPA)-mediated sonothrombolysis techniques is effectively treating retracted blood clots, owing to the high density and low porosity of retracted clots. Nanodroplets (NDs) have the potential to enhance retracted clot lysis owing to their small size and ability to penetrate into retracted clots to enhance drug delivery. For the first time, we demonstrate that a sub-megahertz, forward-viewing intravascular (FVI) transducer can be used for ND-mediated sonothrombolysis, in vitro. In this study, we determined the minimum peak negative pressure to induce cavitation with low-boiling point phase change nanodroplets and clot lysis. We then compared nanodroplet mediated sonothrombolysis to MB and tPA mediate techniques. The clot lysis as a percent mass decrease in retracted clots was 9 ± 8%, 9 ± 5%, 16 ± 5%, 14 ± 9%, 17 ± 9%, 30 ± 8%, and 40 ± 9% for the control group, tPA alone, tPA + US, MB + US, MB + tPA + US, ND + US, and ND + tPA + US groups, respectively. In retracted blood clots, combined ND- and tPA-mediated sonothrombolysis was able to significantly enhance retracted clot lysis compared with traditional MB and tPA-mediated sonothrombolysis techniques. Combined nanodroplet with tPA-mediated sonothrombolysis may provide a feasible strategy for safely treating retracted clots.


2021 ◽  
Author(s):  
Monir Falsafi ◽  
Amir Shokooh Saljooghi ◽  
Khalil Abnous ◽  
Seyed Mohammad Taghdisi ◽  
Mohammad Ramezani ◽  
...  

Metal–organic frameworks (MOFs), as a prominent category of hybrid porous materials constructed from metal clusters or ions plus organic linkers, have been broadly employed as controlled systems of drug delivery...


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1598 ◽  
Author(s):  
Tahir Rasheed ◽  
Komal Rizwan ◽  
Muhammad Bilal ◽  
Hafiz M. N. Iqbal

Metal-organic frameworks (MOFs) are a fascinating class of porous crystalline materials constructed by organic ligands and inorganic connectors. Owing to their noteworthy catalytic chemistry, and matching or compatible coordination with numerous materials, MOFs offer potential applications in diverse fields such as catalysis, proton conduction, gas storage, drug delivery, sensing, separation and other related biotechnological and biomedical applications. Moreover, their designable structural topologies, high surface area, ultrahigh porosity, and tunable functionalities all make them excellent materials of interests for nanoscale applications. Herein, an effort has been to summarize the current advancement of MOF-based materials (i.e., pristine MOFs, MOF derivatives, or MOF composites) for electrocatalysis, photocatalysis, and biocatalysis. In the first part, we discussed the electrocatalytic behavior of various MOFs, such as oxidation and reduction candidates for different types of chemical reactions. The second section emphasizes on the photocatalytic performance of various MOFs as potential candidates for light-driven reactions, including photocatalytic degradation of various contaminants, CO2 reduction, and water splitting. Applications of MOFs-based porous materials in the biomedical sector, such as drug delivery, sensing and biosensing, antibacterial agents, and biomimetic systems for various biological species is discussed in the third part. Finally, the concluding points, challenges, and future prospects regarding MOFs or MOF-based materials for catalytic applications are also highlighted.


2015 ◽  
Vol 742 ◽  
pp. 330-334
Author(s):  
Chun Jian Wang ◽  
Wei Yue ◽  
Hai Yan Ji

In allusion to the need of analyzing complex system, we have proposed a method named multi-grade color Petri net. We for the first time use this new method to analyze a missile training simulator system. This model can accurately reflect the complex environments of the system and avoid the difficulty occurring often in developing accurate mathematics model by using classical research approach.


2015 ◽  
Vol 3 (24) ◽  
pp. 4871-4883 ◽  
Author(s):  
Yuqiong Wu ◽  
Lunguo Xia ◽  
Yuning Zhou ◽  
Wudi Ma ◽  
Na Zhang ◽  
...  

Icariin has been identified to promote osteogenic differentiation of bone mesenchymal stem cells (BMSCs).


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
María Vallet-Regí

Mesoporous silica nanoparticles are receiving growing attention by the scientific biomedical community. Among the different types of inorganic nanomaterials, mesoporous silica nanoparticles have emerged as promising multifunctional platforms for nanomedicine. Since their introduction in the drug delivery landscape in 2001, mesoporous materials for drug delivery are receiving growing scientific interest for their potential applications in the biotechnology and nanomedicine fields. The ceramic matrix efficiently protects entrapped guest molecules against enzymatic degradation or denaturation induced by pH and temperature as no swelling or porosity changes take place as a response to variations in the surrounding medium. It is possible to load huge amounts of cargo into the mesopore voids and capping the pore entrances with different nanogates. The application of a stimulus provokes the nanocap removal and triggers the departure of the cargo. This strategy permits the design of stimuli-responsive drug delivery nanodevices.


Sign in / Sign up

Export Citation Format

Share Document