scholarly journals Inhibitory activity and degradation of curcumin as Anti-Biofilm Polymicrobial on Catheters

2020 ◽  
Vol 11 (1) ◽  
pp. 830-835
Author(s):  
Hasyrul Hamzah ◽  
Triana Hertiani ◽  
Sylvia Utami Tunjung Pratiwi ◽  
Titik Nuryastuti

Related biofilms in urinary tract infections and cause deaths per 7500 people. Biofilms are a serious problem and are resolved with antibiotic therapy. Curcumin is a pure composition of the turmeric plant (Curcuma longa Linn.) Which has antimicrobial activity, but the activity of polymicrobial antibiofilm on the catheter has never been launched. The discovery of new antibiofilm candidates for polymicrobial biofilms on catheters is a challenge that must be overcome in preventing infections related to biofilms.  This study aims to determine the effectiveness of curcumin in inhibiting and degrading polymicrobial catheters. Biofilm inhibition testing and biofilm degradation testing were determined using the microtiter broth method. The effectiveness of curcumin on biofilms was analyzed by calculating the minimum biofilm inhibitory concentration (MBIC50) and the minimum value of biofilm eradication concentration (MBEC50). The mechanism of action of curcumin against polymicrobial biofilms on the catheter was tested using scanning electron microscopy (SEM). Curcumin 1% gives 60% inhibitory activity to the formation of polymicrobial biofilms on the catheter in the middle phase by 65.05 ± 0.01 and the maturation phase by 61.23 ± 0.01, and this is better than the control of the drug nystatin in the middle phase and maturation by 57.58 ± 0.01 and 56.31 ± 0.01 and are almost equivalent to the control drug chloramphenicol. The results also provide evidence of the activity of curcumin can degrade 50%. Polymicrobial biofilm on the catheter was 51.49 ± 0.01 and damaged the extracellular polymeric matrix (EPS) polymicrobial biofilm on the catheter. Therefore, curcumin is very potential to be developed as a candidate for new antibiofilm drugs against polymicrobial catheters

2020 ◽  
Vol 28 ◽  
pp. 04001
Author(s):  
Hasyrul Hamzah ◽  
Triana Hertiani ◽  
Sylvia Utami Tunjung Pratiwi ◽  
Titik Nuryastuti ◽  
Yosi Bayu Murti

Curcumin is a polyphenol compound that is a member of the ginger family (Zingiberaceae), which has potential as an antibacterial, antifungal, and polymicrobial antibiofilm on the catheter. Still, its inhibitory activity and eradication of non-catheter polymicrobial antibiotics against S. aureus, P. aeruginosa, E. coli, and C. albicans have never been reported. The discovery of a candidate polymicrobial anti-biofilm drug is indispensable for overcoming infections associated with biofilms. This study aims to determine the inhibitory activity and eradication of curcumin on polymicrobial biofilms. Inhibition testing and eradication activity of polymicrobial biofilms were performed using the microtiter broth method. The effectiveness of curcumin on polymicrobial biofilms was analyzed using minimum biofilm inhibition concentration (MBIC50) and minimum biofilm eradication concentration (MBEC50). The mechanism of action of curcumin against polymicrobial biofilms is tested using scanning electron microscopy (SEM). Curcumin 1 % b/v gives biofilm inhibition activity in the mid-phase and maturation of 62.23 % ± 0.01, 59.43 % ± 0.01, and can eradicate polymicrobial biofilms by 55.79 % ± 0.01 and not much different with nystatin drug control activity. The results also provide evidence that curcumin can damage the extracellular polymeric matrix (EPS) polymicrobial biofilms of S. aureus, P. aeruginosa, E. coli, and C. albicans and damage the morphology of polymicrobial biofilms. Therefore, curcumin can be developed as a candidate for new antibiofilm drugs against polymicrobial biofilms S. aureus, P. aeruginosa, E. coli dan C albicabs.


2019 ◽  
Vol 24 (2) ◽  
pp. 110 ◽  
Author(s):  
Hasyrul Hamzah ◽  
Triana Hertiani ◽  
Sylvia Utami Tunjung Pratiwi ◽  
Titik Nuryastuti

Biofilm acts as the mediator for infection nowadays. Approximately, more than 80% infection incidents are biofilm-formation related. Biofilm as bacteria's defense system is more difficult to eradicate by antibiotic; therefore, pathogen bacteria on their biofilm forms can make serious problems for human health. The invention of a new candidate for polymicrobial biofilm can be an essential challenge to be studied, in order to prevent infections related to biofilm. Tannin is a polyphenol compound with anti-bacterial and anti-fungal potential. This study aims to acknowledge the effectiveness of tannin in inhibition and degradation of C. albicans, P. aeruginosa, E. coli, S. aureus, and polymicrobial biofilm. The assay for biofilm inhibition and degradation were determined with microtiter broth method. The effectivity of tannin antibiofilm against polymicrobial biofilm were analyzed by calculating minimum biofilm inhibitory concentration (MBIC50) and minimum biofilm eradication concentration (MBEC50) values. The mechanism of action of tannin against polymicrobial biofilm was tested using scanning electron microscopy (SEM). The data were analyzed using the Statistical Package for the Social Sciences (SPSS) with a 95% confidence level. Tannin 1% gave inhibition activity of mono-species biofilm formation S. aureus in the middle phase and maturation of 79.04±0.01, 61.48±0.03, E. coli 74.56±0.01, 67.91±0.02, P. aeruginosa 67.32±0.05, 35.13± 0.01, C. albicans 60.62±0.01, 47.16±0.01. The results also provide evidence that tannin activity can degrade and damage the matrix of extracellular polymeric substance (EPS) polymicrobial biofilms. Hence, tannins can be a potential candidate for new antibiofilm for polymicrobial biofilm.


2021 ◽  
Vol 12 (2) ◽  
pp. 1507-1519

Clove oil is one of the natural antibacterial ingredients that is easily obtained because of its abundant amounts in nature. Various researches have been conducted, but the antibiofilm activity against Candida tropicalis has never been done. This study evaluates the effectiveness of clove oil in inhibiting and degrading C. tropicalis JFM 1541 biofilm activity. The research was conducted using the microtiter broth method. The antibiofilm activity was determined as the minimum biofilm inhibitory concentration (MBIC50), the minimum value of biofilm eradication concentration (MBEC50). Antibiofilm mechanism was elucidated using scanning electron microscopy (SEM). Statistical analyzes were performed using ANOVA (p <0.05). Showed that clove oil could inhibit biofilm formation at the middle phase by 65% (65.21 ± 0.01) and at the maturation phase by 56% (56.11 ± 0.01). Clove oil with a concentration of 1% v/v has been shown to have activity in degrading 41% of C. tropicalis biofilms (41.87 ± 0.01). SEM shows that clove oil can cause damage in the extracellular polymeric matrix (EPS) of C. tropicalis biofilm. In conclusion, clove oil acts as a potential antibiofilm activity against C. tropicalis (compared to nystatin as control drugs) and further developed a new antibiofilm agent.


Author(s):  
Li Li-Sheng ◽  
L.F. Allard ◽  
W.C. Bigelow

The aromatic polyamides form a class of fibers having mechanical properties which are much better than those of aliphatic polyamides. Currently, the accepted morphology of these fibers as proposed by M.G. Dobb, et al. is a radial arrangement of pleated sheets, with the plane of the pleats parallel to the axis of the fiber. We have recently obtained evidence which supports a different morphology of this type of fiber, using ultramicrotomy and ion-thinning techniques to prepare specimens for transmission and scanning electron microscopy.


Author(s):  
Michael T. Postek

The term ultimate resolution or resolving power is the very best performance that can be obtained from a scanning electron microscope (SEM) given the optimum instrumental conditions and sample. However, as it relates to SEM users, the conventional definitions of this figure are ambiguous. The numbers quoted for the resolution of an instrument are not only theoretically derived, but are also verified through the direct measurement of images on micrographs. However, the samples commonly used for this purpose are specifically optimized for the measurement of instrument resolution and are most often not typical of the sample used in practical applications.SEM RESOLUTION. Some instruments resolve better than others either due to engineering design or other reasons. There is no definitively accurate definition of how to quantify instrument resolution and its measurement in the SEM.


Author(s):  
M. K. Lamvik

When observing small objects such as cellular organelles by scanning electron microscopy, it is often valuable to use the techniques of transmission electron microscopy. The common practice of mounting and coating for SEM may not always be necessary. These possibilities are illustrated using vertebrate skeletal muscle myofibrils.Micrographs for this study were made using a Hitachi HFS-2 scanning electron microscope, with photographic recording usually done at 60 seconds per frame. The instrument was operated at 25 kV, with a specimen chamber vacuum usually better than 10-7 torr. Myofibrils were obtained from rabbit back muscle using the method of Zak et al. To show the component filaments of this contractile organelle, the myofibrils were partially disrupted by agitation in a relaxing medium. A brief centrifugation was done to clear the solution of most of the undisrupted myofibrils before a drop was placed on the grid. Standard 3 mm transmission electron microscope grids covered with thin carbon films were used in this study.


2021 ◽  
Vol 11 (12) ◽  
pp. 5496
Author(s):  
Zarina Amin ◽  
Nur Ariffah Waly ◽  
Sazmal Effendi Arshad

A challenging problem in the aquaculture industry is bacterial disease outbreaks, which result in the global reduction in fish supply and foodborne outbreaks. Biofilms in marine pathogens protect against antimicrobial treatment and host immune defense. Zeolites are minerals of volcanic origin made from crystalline aluminosilicates, which are useful in agriculture and in environmental management. In this study, silver-ion-exchanged zeolite A of four concentrations; 0.25 M (AgZ1), 0.50 M (AgZ2), 1.00 M (AgZ3) and 1.50 M (AgZ4) were investigated for biofilm inhibition and antimicrobial properties against two predominant marine pathogens, V. campbelli and V. parahemolyticus, by employing the minimum inhibitory concentration (MIC) and crystal violet biofilm quantification assays as well as scanning electron microscopy. In the first instance, all zeolite samples AgZ1–AgZ4 showed antimicrobial activity for both pathogens. For V. campbellii, AgZ4 exhibited the highest MIC at 125.00 µg/mL, while for V. parahaemolyticus, the highest MIC was observed for AgZ3 at 62.50 µg/mL. At sublethal concentration, biofilm inhibition of V. campbelli and V. parahemolyticus by AgZ4 was observed at 60.2 and 77.3% inhibition, respectively. Scanning electron microscopy exhibited profound structural alteration of the biofilm matrix by AgZ4. This is the first known study that highlights the potential application of ion-exchanged zeolite A against marine pathogens and their biofilms.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 469
Author(s):  
Ga-Eun Park ◽  
Jae-Hoon Ko ◽  
Sun-Young Cho ◽  
Hee-Jae Huh ◽  
Jin-Yang Baek ◽  
...  

In 2018, the Clinical and Laboratory Standards Institute (CLSI) revised ciprofloxacin (CIP)-susceptible breakpoint for Enterobacteriaceae from ≤1 μg/mL to ≤0.25 μg/mL, based on pharmacokinetic-pharmacodynamic (PK-PD) analysis. However, clinical data supporting the lowered CIP breakpoint are insufficient. This retrospective cohort study evaluated the clinical outcomes of patients with bacteremic urinary tract infections (UTIs) caused by Enterobacteriaceae, which were previously CIP-susceptible and changed to non-susceptible. Bacteremic UTIs caused by Enterobacteriaceae with CIP minimal inhibitory concentration (MIC) ≤ 1 μg/mL were screened, and then patients treated with CIP as a definitive treatment were finally included. Patients in CIP-non-susceptible group (MIC = 0.5 or 1 μg/mL) were compared with patients in CIP-susceptible group (MIC ≤ 0.25 μg/mL). Primary endpoints were recurrence of UTIs within 4 weeks and 90 days. A total of 334 patients were evaluated, including 282 of CIP-susceptible and 52 of CIP-non-susceptible. There were no significant differences in clinical outcomes between two groups. In multivariate analysis, CIP non-susceptibility was not associated with recurrence of UTIs. CIP non-susceptibility based on a revised CIP breakpoint, which was formerly susceptible, was not associated with poor clinical outcomes in bacteremic UTI patients were treated with CIP, similar to those of the susceptible group. Further evaluation is needed to guide the selection of definitive antibiotics for UTIs.


Lab on a Chip ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 755-763
Author(s):  
Kuo-Wei Hsu ◽  
Wen-Bin Lee ◽  
Huey-Ling You ◽  
Mel S. Lee ◽  
Gwo-Bin Lee

A portable, integrated microfluidic system capable of automatically conducting antimicrobial susceptibility testing (AST) and minimum inhibitory concentration (MIC) measurements using urine samples were developed.


Sign in / Sign up

Export Citation Format

Share Document