scholarly journals Enhancement of Polymeric Poly-(β)-Hydroxy Butyrate (PHB) production from Alcaligenes faecalis through the Optimisation process

2020 ◽  
Vol 11 (4) ◽  
pp. 7436-7441
Author(s):  
Naman Jain ◽  
Lily Priyadarshini ◽  
Kritika Sharma ◽  
Iyappan S ◽  
Jaganathan M K ◽  
...  

Polyhydroxybutyrates (PHBs) are biodegradable polymers synthesised and stored as cytoplasmic inclusions in various bacteria. They have a wide variety of applications in various fields such as Biomedical, food, agriculture, and pharmaceutical industries and used as a vehicle for controlled-release drug delivery system. The PHB producing microorganisms were isolated from the dump soil, screened by fluorescence microscope at 490 nm and characterised by 16sRNA sequencing. Process parameters optimisation is performed for maximum PHB production by changing the parameters, viz., temperature, pH, different carbon, and nitrogen source. The isolate showed maximum PHB accumulation in the concentration of 0.07 mg/mL after 72 hours incubation at 35⁰C and in pH 7 showed the maximum concentration of 0.055 mg/mL. FT-IR characterised PHB shows the bands at 3426 cm-1 are due to the presence of C–H methylene and methyl groups and retention time of the peak at 12.39 min was determined HPLC. D- Glucose was found to be the best carbon source for the maximum production of PHB in the concentration of 0.0319 mg/mL and the media supplemented with peptone as the nitrogen source showed the 0.0723 mg/mL is the maximum accumulation of PHB in the cells; thus, the isolate shows the potential of PHB production for further exploitation.

2020 ◽  
Author(s):  
Rashmi Mishra ◽  
Ramesh Chandra

Abstract Alpha mannosidases are enzymes with varied applications preferably used in the preparation of important compounds of food and pharmaceutical industries. The production of enzymes is influenced by medium compositions as some of the constituents of the medium directly affect the enzyme synthesis. In the present study, the components of the culture medium are optimized by classical and Taguchi method for α-mannosidase from the suspension culture of the moss Hyophilla nymaniana (Fleish.) Menzel. One factor at a time approach was used in the preliminary screening of factors before proceeding optimization studies. Implementation of Taguchi Design of Experiment generated 16 experimental runs based on five factors sugar, temperature, pH, rpm, and nitrogen source. Analysis of variance (ANOVA) was performed on the obtained results and the optimum condition suggested by statistical calculations was validated in a verification test. The ANOVA result showed that the NH4NO3 contributed maximum on mannosidase production followed by temperature and RPM. Predicted results showed an enhanced mannosidase (63 %) can be achieved with pH 5.8, temperature 26 °C, RPM 120, maltose 1.5 %, and NH4NO3 2 % as carbon and nitrogen source, respectively.


1969 ◽  
Vol 22 (2) ◽  
pp. 425 ◽  
Author(s):  
WN Strickland

There are two glutamate dehydrogenases (GDH) produced by wild-type strains of N. cra88a, one of which is specific for the coenzyme NADP and the other for the coenzyme NAD. The latter enzyme (NAD-GDH) is induced if glutamate is used as the sole carbon and nitrogen source and is induced to a lesser extent if inorganic nitrogen is added. Addition of sucrose to the medium prevents uptake of glutamate and there is no induction of the enzyme.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Rianne C. Prins ◽  
Sonja Billerbeck

Abstract Background Fungi are premier hosts for the high-yield secretion of proteins for biomedical and industrial applications. The stability and activity of these secreted proteins is often dependent on the culture pH. As yeast acidifies the commonly used synthetic complete drop-out (SD) media that contains ammonium sulfate, the pH of the media needs to be buffered in order to maintain a desired extracellular pH during biomass production. At the same time, many buffering agents affect growth at the concentrations needed to support a stable pH. Although the standard for biotechnological research and development is shaken batch cultures or microtiter plate cultures that cannot be easily automatically pH-adjusted during growth, there is no comparative study that evaluates the buffering capacity and growth effects of different media types across pH-values in order to develop a pH-stable batch culture system. Results We systematically test the buffering capacity and growth effects of a citrate-phosphate buffer (CPB) from acidic to neutral pH across different media types. These media types differ in their nitrogen source (ammonium sulfate, urea or both). We find that the widely used synthetic drop-out media that uses ammonium sulfate as nitrogen source can only be effectively buffered at buffer concentrations that also affect growth. At lower concentrations, yeast biomass production still acidifies the media. When replacing the ammonium sulfate with urea, the media alkalizes. We then develop a medium combining ammonium sulfate and urea which can be buffered at low CPB concentrations that do not affect growth. In addition, we show that a buffer based on Tris/HCl is not effective in maintaining any of our media types at neutral pH even at relatively high concentrations. Conclusion Here we show that the buffering of yeast batch cultures is not straight-forward and addition of a buffering agent to set a desired starting pH does not guarantee pH-maintenance during growth. In response, we present a buffered media system based on an ammonium sulfate/urea medium that enables relatively stable pH-maintenance across a wide pH-range without affecting growth. This buffering system is useful for protein-secretion-screenings, antifungal activity assays, as well as for other pH-dependent basic biology or biotechnology projects.


2021 ◽  
Author(s):  
Jin-Tian Ma ◽  
Li-Sheng Wang ◽  
Zhi Chai ◽  
Xin-Feng Chen ◽  
Bo-Cheng Tang ◽  
...  

Quinazoline skeletons are synthesized by amino acids catabolism/reconstruction combined with dimethyl sulfoxide insertion/cyclization for the first time. The amino acid acts as a carbon and nitrogen source through HI-mediated catabolism...


2016 ◽  
Vol 45 (41) ◽  
pp. 16519-16525 ◽  
Author(s):  
Jiao Xue ◽  
Runwei Wang ◽  
Zongtao Zhang ◽  
Shilun Qiu

C, N co-modified niobium pentoxide (Nb2O5) nanoneedles have been successfully synthesized via a facile hydrothermal method with Niobium Chloride (NbCl5) as a precursor and triethylamine as both the carbon and nitrogen source.


2011 ◽  
Vol 2011 ◽  
pp. 1-4 ◽  
Author(s):  
Shiyi Ou ◽  
Jing Zhang ◽  
Yong Wang ◽  
Ning Zhang

A mixture of wheat bran with maize bran as a carbon source and addition of (NH4)SO4 as nitrogen source was found to significantly increase production of feruloyl esterase (FAE) enzyme compared with wheat bran as a sole carbon and nitrogen source. The optimal conditions in conical flasks were carbon source (30 g) to water 1 : 1, maize bran to wheat bran 1 : 2, (NH4)SO4 1.2 g and MgSO4 70 mg. Under these conditions, FAE activity was 7.68 mU/g. The FAE activity on the mixed carbon sources showed, high activity against the plant cell walls contained in the cultures.


2009 ◽  
Vol 325 (1-2) ◽  
pp. 243-253 ◽  
Author(s):  
A. Montoya-González ◽  
O. E. González-Navarro ◽  
B. Govaerts ◽  
K. D. Sayre ◽  
I. Estrada ◽  
...  

2015 ◽  
Vol 197 (17) ◽  
pp. 2831-2839 ◽  
Author(s):  
Katherine A. Miller ◽  
Robert S. Phillips ◽  
Paul B. Kilgore ◽  
Grady L. Smith ◽  
Timothy R. Hoover

ABSTRACTSalmonella entericserovar Typhimurium, a major cause of food-borne illness, is capable of using a variety of carbon and nitrogen sources. Fructoselysine and glucoselysine are Maillard reaction products formed by the reaction of glucose or fructose, respectively, with the ε-amine group of lysine. We report here thatS. Typhimurium utilizes fructoselysine and glucoselysine as carbon and nitrogen sources via a mannose family phosphotransferase (PTS) encoded bygfrABCD(glucoselysine/fructoselysine PTS components EIIA, EIIB, EIIC, and EIID; locus numbers STM14_5449 to STM14_5454 inS. Typhimurium 14028s). Genes coding for two predicted deglycases within thegfroperon,gfrEandgfrF, were required for growth with glucoselysine and fructoselysine, respectively. GfrF demonstrated fructoselysine-6-phosphate deglycase activity in a coupled enzyme assay. The biochemical and genetic analyses were consistent with a pathway in which fructoselysine and glucoselysine are phosphorylated at the C-6 position of the sugar by the GfrABCD PTS as they are transported across the membrane. The resulting fructoselysine-6-phosphate and glucoselysine-6-phosphate subsequently are cleaved by GfrF and GfrE to form lysine and glucose-6-phosphate or fructose-6-phosphate. Interestingly, althoughS. Typhimurium can use lysine derived from fructoselysine or glucoselysine as a sole nitrogen source, it cannot use exogenous lysine as a nitrogen source to support growth. Expression ofgfrABCDEFwas dependent on the alternative sigma factor RpoN (σ54) and an RpoN-dependent LevR-like activator, which we designated GfrR.IMPORTANCESalmonellaphysiology has been studied intensively, but there is much we do not know regarding the repertoire of nutrients these bacteria are able to use for growth. This study shows that a previously uncharacterized PTS and associated enzymes function together to transport and catabolize fructoselysine and glucoselysine. Knowledge of the range of nutrients thatSalmonellautilizes is important, as it could lead to the development of new strategies for reducing the load ofSalmonellain food animals, thereby mitigating its entry into the human food supply.


2020 ◽  
Vol 5 (1) ◽  
pp. 54
Author(s):  
Erwin Indriyanti ◽  
Masitoh Suryaning Prahasiwi

<p>Cinnamic acid plays a vital role in the synthesis of other important compounds and as a precursor for the synthesis of commercial cinnamon esters used in perfumery, cosmetics, and pharmaceutical industries. The aim of this research is to synthesize cinnamic acid using sonochemical methods. Cinnamic acid was synthesized using Perkin reaction by reacting 0.05 mole of benzaldehyde with 0.073 mole of acetic acid anhydride and 0.03 mole of sodium acetate as a catalyst in the Erlenmeyer flask and then the mixture was put in a sonicator for 60 minutes at 70 <sup>o</sup>C. The synthesized compound was tested organoleptic properties, and the melting point was measured. The chemical structure was elucidated using FT-IR, H-NMR, and <sup>13</sup>C-NMR. The photoprotective activity was examined from its antioxidant and SPF values. The synthesized compound was found in the form of a shiny white fine crystal which had distinctive odor with a yield of 4.98% and the melting point was found at 133<sup> o</sup>C. In the structure elucidation using FT-IR (the aromatic ring absorption at the wave number 1580 cm<sup>-1</sup> -1600 cm<sup>-1</sup>. The wave number 1625 cm<sup>-1</sup>is an aromatic conjugated alkene group, while wave  number 1689.4 cm<sup>-1 </sup>is a carbonyl group. The wave number 2500 cm<sup>-1 </sup>– 3250 cm<sup>-1 </sup>is an OH carboxylic acid group) , H-NMR (7.410 (<em>m</em>, 5H, Ar-H); 7.425(<em>t</em>, 1H); 7.572 (<em>d</em>, 1H); 8.057 (d, 1H,C=CH) and <sup>13</sup>C-NMR (129.309 ppm; 130.998 ppm; 134.58 ppm; 170.017 ppm) showed that when compared with the standard compound as the reference, the synthesized compound was confirmed to be cinnamic acid. The antioxidant activity test showed that at the concentration of 20 ppm the synthesized compound was able to reduce free radicals by 46.69%. This finding showed that  the synthesized compound had antioxidant activity.</p>


Sign in / Sign up

Export Citation Format

Share Document