scholarly journals A survey of voltage-controlled-oscillator-based ΔΣ ADCs

2022 ◽  
Vol 27 (3) ◽  
pp. 472-480
Author(s):  
Yi Zhong ◽  
Nan Sun
2015 ◽  
Vol E98.C (6) ◽  
pp. 471-479
Author(s):  
Teerachot SIRIBURANON ◽  
Wei DENG ◽  
Kenichi OKADA ◽  
Akira MATSUZAWA

Author(s):  
Shitesh Tiwari ◽  
Sumant Katiyal ◽  
Parag Parandkar

Voltage Controlled Oscillator (VCO) is an integral component of most of the receivers such as GSM, GPS etc. As name indicates, oscillation is controlled by varying the voltage at the capacitor of LC tank. By varying the voltage, VCO can generate variable frequency of oscillation. Different VCO Parameters are contrasted on the basis of phase noise, tuning range, power consumption and FOM. Out of these phase noise is dependent on quality factor, power consumption, oscillation frequency and current. So, design of LC VCO at low power, low phase noise can be obtained with low bias current at low voltage.  Nanosize transistors are also contributes towards low phase noise. This paper demonstrates the design of low phase noise LC VCO with 4.89 GHz tuning range from 7.33-11.22 GHz with center frequency at 7 GHz. The design uses 32nm technology with tuning voltage of 0-1.2 V. A very effective Phase noise of -114 dBc / Hz is obtained with FOM of -181 dBc/Hz. The proposed work has been compared with five peer LC VCO designs working at higher feature sizes and outcome of this performance comparison dictates that the proposed work working at better 32 nm technology outperformed amongst others in terms of achieving low Tuning voltage and moderate FoM, overshadowed by a little expense of power dissipation. 


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 889
Author(s):  
Xiaoying Deng ◽  
Peiqi Tan

An ultra-low-power K-band LC-VCO (voltage-controlled oscillator) with a wide tuning range is proposed in this paper. Based on the current-reuse topology, a dynamic back-gate-biasing technique is utilized to reduce power consumption and increase tuning range. With this technique, small dimension cross-coupled pairs are allowed, reducing parasitic capacitors and power consumption. Implemented in SMIC 55 nm 1P7M CMOS process, the proposed VCO achieves a frequency tuning range of 19.1% from 22.2 GHz to 26.9 GHz, consuming only 1.9 mW–2.1 mW from 1.2 V supply and occupying a core area of 0.043 mm2. The phase noise ranges from −107.1 dBC/HZ to −101.9 dBc/Hz at 1 MHz offset over the whole tuning range, while the total harmonic distortion (THD) and output power achieve −40.6 dB and −2.9 dBm, respectively.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1873
Author(s):  
Chen Cai ◽  
Xuqiang Zheng ◽  
Yong Chen ◽  
Danyu Wu ◽  
Jian Luan ◽  
...  

This paper presents a fully integrated physical layer (PHY) transmitter (TX) suiting for multiple industrial protocols and compatible with different protocol versions. Targeting a wide operating range, the LC-based phase-locked loop (PLL) with a dual voltage-controlled oscillator (VCO) was integrated to provide the low jitter clock. Each lane with a configurable serialization scheme was adapted to adjust the data rate flexibly. To achieve high-speed data transmission, several bandwidth-extended techniques were introduced, and an optimized output driver with a 3-tap feed-forward equalizer (FFE) was proposed to accomplish high-quality data transmission and equalization. The TX prototype was fabricated in a 28-nm CMOS process, and a single-lane TX only occupied an active area of 0.048 mm2. The shared PLL and clock distribution circuits occupied an area of 0.54 mm2. The proposed PLL can support a tuning range that covers 6.2 to 16 GHz. Each lane's data rate ranged from 1.55 to 32 Gb/s, and the energy efficiency is 1.89 pJ/bit/lane at a 32-Gb/s data rate and can tune an equalization up to 10 dB.


2013 ◽  
Vol 385-386 ◽  
pp. 1278-1281 ◽  
Author(s):  
Zheng Fei Hu ◽  
Ying Mei Chen ◽  
Shao Jia Xue

A 25-Gb/s clock and data recovery (CDR) circuit with 1:2 demultiplexer which incorporates a quadrature LC voltage-controlled-oscillator and a half-rate bang-bang phase detector is presented in this paper. A quadrature LC VCO is presented to generate the four-phase output clocks. A half-rate phase detector including four flip-flops samples the 25-Gb/s input data every 20 ps and alignes the data phase. The 25-Gb/s data are retimed and demultiplexed into two 12.5-Gb/s output data. The CDR is designed in TSMC 65nm CMOS Technology. Simulation results show that the recovered clock exhibits a peak-to-peak jitter of 0.524ps and the recovered data exhibits a peak-to-peak jitter of 1.2ps. The CDR circuit consumes 121 mW from a 1.2 V supply.


2014 ◽  
Vol 668-669 ◽  
pp. 808-811
Author(s):  
Hui Min Zhang ◽  
Qing Ping Wu ◽  
Zheng Yuan Zhou ◽  
Xun Wang

The low frequency voltage controlled oscillator (VCO) is designed using integrated operational amplifier. The frequency of the output signal of VCO changes with the magnitude of the input signal voltage, and show a linear relationship within a certain range through the experimental test. Experiments show that, under the input of certain amplitude and frequency range of the square wave, triangle wave, saw-tooth wave, the output waveform of VCO respectively is ambulance, fire siren and other kinds of ambulance siren Signal. This innovative design’ cost is low, realized by analog circuit. It can be used in the practice of teaching case, electronic production or development of sound panels.


Sign in / Sign up

Export Citation Format

Share Document