scholarly journals Effect of fucoidan on ethanol-induced liver injury and steatosis in mice and the underlying mechanism

Author(s):  
Meilan Xue ◽  
Hui Liang ◽  
Zhitong Zhou ◽  
Ying Liu ◽  
Xinjia He ◽  
...  

Background: Alcoholic liver disease is caused as a result of chronic alcohol consumption. In this study, we used an alcoholic liver injury mouse model to investigate the effect of fucoidan on ethanol-induced liver injury and steatosis and the underlying mechanisms. Methods: All mice were randomly divided into four groups: 1) control group, 2) model group, 3) diammonium glycyrrhizinate treatment group (200 mg/kg body weight), and 4) fucoidan treatment group (300 mg/kg body weight). Administration of ethanol for 8 weeks induced liver injury and steatosis in mice. Results: Fucoidan treatment decreased serum alanine aminotransferase activity, serum total cholesterol levels, and hepatic triglyceride levels, and improved the morphology of hepatic cells. Fucoidan treatment upregulated the expression of AMPKα1, SIRT1, and PGC-1α and inhibited the expression of ChREBP and HNF-1α. The levels of hepatic IL-6 and IL-18 were significantly decreased in the fucoidan group. Further, the levels of cytochrome P450-2E1 (CYP2E1), glucose-regulated protein (GRP) 78, and 3-nitrotyrosine (3-NT) in hepatic tissues were reduced in the fucoidan group as compared to the model group. Fucoidan significantly reversed the reduction of ileac Farnesoid X receptor (FXR) and fibroblast growth factor 15 (FGF15) levels induced by alcohol- feeding and reduced CYP7A1 (cholesterol 7α-hydroxylase) expression and total bile acid levels in the liver tissue. In addition, fucoidan regulated the structure of gut flora, with increased abundance of Prevotella and decreased abundance of Paraprevotella and Romboutsia as detected by 16S rDNA high-throughput sequencing. Conclusion: Fucoidan inhibited alcohol-induced steatosis and disorders of bile acid metabolism in mice through the AMPKα1/SIRT1 pathway and the gut microbiota–bile acid–liver axis and protected against alcohol- induced liver injury in vivo.

Author(s):  
Peijie Wu ◽  
Ling Qiao ◽  
Han Yu ◽  
Hui Ming ◽  
Chao Liu ◽  
...  

Cholestasis is a kind of stressful syndrome along with liver toxicity, which has been demonstrated to be related to fibrosis, cirrhosis, even cholangiocellular or hepatocellular carcinomas. Cholestasis usually caused by the dysregulated metabolism of bile acids that possess high cellular toxicity and synthesized by cholesterol in the liver to undergo enterohepatic circulation. In cholestasis, the accumulation of bile acids in the liver causes biliary and hepatocyte injury, oxidative stress, and inflammation. The farnesoid X receptor (FXR) is regarded as a bile acid–activated receptor that regulates a network of genes involved in bile acid metabolism, providing a new therapeutic target to treat cholestatic diseases. Arbutin is a glycosylated hydroquinone isolated from medicinal plants in the genus Arctostaphylos, which has a variety of potentially pharmacological properties, such as anti-inflammatory, antihyperlipidemic, antiviral, antihyperglycemic, and antioxidant activity. However, the mechanistic contributions of arbutin to alleviate liver injury of cholestasis, especially its role on bile acid homeostasis via nuclear receptors, have not been fully elucidated. In this study, we demonstrate that arbutin has a protective effect on α-naphthylisothiocyanate–induced cholestasis via upregulation of the levels of FXR and downstream enzymes associated with bile acid homeostasis such as Bsep, Ntcp, and Sult2a1, as well as Ugt1a1. Furthermore, the regulation of these functional proteins related to bile acid homeostasis by arbutin could be alleviated by FXR silencing in L-02 cells. In conclusion, a protective effect could be supported by arbutin to alleviate ANIT-induced cholestatic liver toxicity, which was partly through the FXR pathway, suggesting arbutin may be a potential chemical molecule for the cholestatic disease.


2019 ◽  
Vol 10 (11) ◽  
pp. 7299-7307 ◽  
Author(s):  
Chen-Jie Ling ◽  
Jia-Ying Xu ◽  
Yun-Hong Li ◽  
Xing Tong ◽  
Huan-Huan Yang ◽  
...  

Lactoferrin (LF) is a multifunctional glycoprotein that can regulate lipid metabolism, lower cholesterol, reduce body weight, and prevent atherosclerosis.


2018 ◽  
Vol 31 (1) ◽  
pp. e000006 ◽  
Author(s):  
Xue Li ◽  
Xin Tian ◽  
Luxian Lv ◽  
Gangrui Hei ◽  
Xufeng Huang ◽  
...  

BackgroundThe well-known ‘pyrotherapy’ of Julius Wagner-Jauregg might be the beginning of the study on the immunological concepts of schizophrenia. As the primary immune effector cells in the brain, microglia play a pivotal role in neuroinflammatory processes. Maternal viral infection during pregnancy is associated with an increased risk for psychiatric disorders with presumed neurodevelopmental origin, including autism spectrum disorders and schizophrenia. The present study was to quantify microglia activation in vivo in the mature offspring of rats exposed to polyriboinosinic–polyribocytidilicacid (Poly I:C) during pregnancy using 11C-PK11195 positron emission tomography (PET) and immunohistochemistry.ObjectiveThe study aimed to quantify microglia activation in vivo in the prefrontal cortex and hippocampus in mature offspring of prenatal Poly I:C exposed rats.MethodsOffspring of Poly I:C-treated dams were the model group, offspring of saline-treated dams were the control group. Behavioural test for two groups was taken by spontaneous activity, prepulse inhibition (PPI) and latent inhibition (LI) test (including active avoidance conditioning task and passive avoidance conditioning task). Randomly selected successful model rats were assessed by behavioural test in the model group and control group rats. 11C-PK11195 micro-PET/CT and immunohistochemistry were performed on the selected rats to measure microglia activation.ResultsThe treatment group showed hyperlocomotion and deficits in PPI and LI compared with the control group. The treatment group also showed an increased 11C-PK11195 uptake ratio in the prefrontal cortex (t=−3.990, p=0.003) and hippocampus (t=−4.462, p=0.001). The number of activated microglia cells was significantly higher in the treatment group than in the control group (hippocampus: t=8.204, p<0.001; prefrontal: t=6.995, p<0.001). Within the treatment group, there were significant correlations between the behavioural parameters and the activation of microglia as measured by PET and immunohistochemistry.ConclusionsThe present study demonstrated microglia activation in vivo in the prefrontal cortex and hippocampus in mature offspring of prenatal Poly I:C exposed rats. This study suggests that microglia activation may play a possible or potential role in the pathogenesis of schizophrenia.


2021 ◽  
Vol 14 (5) ◽  
pp. 452
Author(s):  
Jiaxiong Ming ◽  
Qianqian Xu ◽  
Limin Gao ◽  
Yanfang Deng ◽  
Jie Yin ◽  
...  

Cholestasis is an important predisposing factor of liver diseases, such as hepatocyte necrosis, liver fibrosis and primary biliary cirrhosis. In this study, we aimed to investigate the effects of Kinsenoside (KD), a natural active ingredient of Anoectochilus roxburghii, on estrogen-induced cholestatic liver injury in Sprague-Dawley rats and the underlying mechanism. The rats were randomly divided into six groups: control group, model group, low-dose KD group (50 mg/kg body weight, KD-L), medium-dose KD group (100 mg/kg body weight, KD-M), high-dose KD group (200 mg/kg body weight, KD-H) and ursodeoxycholic acid group (40 mg/kg body weight, UDCA). 17α-Ethinylestradiol (EE) was used to establish an experimental animal model of estrogen-induced cholestasis (EIC). The results demonstrated that KD alleviated liver pathologic damage, serum biochemical status and inhibited hepatocellular microstructure disorder and bile duct hyperplasia in EE-induced cholestatic rats. Mechanically, KD alleviated EE-induced cholestatic liver injury by inhibiting inflammatory responses and regulating bile acid homeostasis. Concretely, KD reduced the expression of IL-1β and IL-6 by inhibiting NF-κB p65 to suppress EE-mediated inflammation in rat liver. KD enhanced the expression of FXR and inhibited EE-mediated reduction of FXR in vitro and in vivo. It was the potential mechanism that KD mitigates cholestasis by increasing efflux and inhibiting uptake of bile acids via FXR-mediated induction of bile salt export pump (BSEP) and reduction of Na+-dependent taurocholate cotransport peptide (NTCP) to maintain bile acid homeostasis. Moreover, KD repressed the bile acid synthesis through reducing the expression of synthetic enzyme (CYP7A1), thereby normalizing the expression of metabolic enzyme (SULT2A1) of bile acid. In conclusion, our results revealed that KD may be an effective drug candidate for the treatment of cholestasis.


Author(s):  
Ni Made Ridla Parwata

Overtraining syndrome is a decrease in physical capacity, emotions and immunity due to training that is too often without adequate periods of rest. Overtraining is often experienced by athletes who daily undergo heavy training with short break periods. This research aims to look at the effect of overtraining aerobic physical exercise on memory in mice. The research method was experimental in vivo with the subject of adult male rat (Rattus Norvegicus) Winstar strain aged 8-10 weeks, body weight 200-250 gr. Divided into three groups, namely the control group, aerobic group and overtraining group. The results of memory tests with water E Maze showed an increase in the duration of travel time and the number of animal errors made by the overtraining group (p = 0.003). This study concludes that overtraining aerobic physical exercise can reduce memory in rat hippocampus.


2019 ◽  
Vol 15 (02) ◽  
pp. 14-17
Author(s):  
K K Hadiya ◽  
A J Dhami ◽  
D V Chaudhari ◽  
P M Lunagariya

This study was initiated on 24 prepubertal Holstein x Kankrej crossbred heifers of nearly identical age (7-9 months) and body weight (130-140 kg) at University farm to evaluate the effect of high plane of nutrition on blood biochemical and minerals profile and the age at puberty. Twelve heifers were managed under routine farm feeding (control) and the rest 12 under ideal optimum feeding regime (treatment) that included extra 1 kg concentrate, 30 g min mix and ad-lib dry fodder. The body weight and ovarian ultrasonography together with blood sampling was carried out at monthly interval from 10 to 18 months of age to study the ovarian dynamics and blood biochemical changes. High plane of nutrition to growing heifers was beneficial in reducing the age of onset of puberty (by 2-3 months) compared to routine farm fed group. The mean plasma total protein and cholesterol concentrations showed a rising trend with significant variations from 10 to 16 months of age, where it got mostly stabilized indicating adult profile. The activity of enzymes GOT and GPT also rose gradually and significantly from 10 months till 14-15 months of age, and thereafter it remained more or less static till 18 months of age. The levels of both these enzymes were higher, with lower protein and cholesterol, in control than the treatment group from 15-16 months of age onwards. The mean plasma levels of both calcium and phosphorus increased gradually and significantly with advancing age till 16-17 months of age, with little higher values in supplemented than a control group. The plasma levels of zinc, iron, copper, and cobalt also showed rising trend with significant differences between 10th and 12th-14th months of age, and from 15th to 18th months of age the levels were statistically the same in all the groups with slightly higher values in the treatment group.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Li-Yao Duan ◽  
Yan Liang ◽  
Wen-Ping Gong ◽  
Yong Xue ◽  
Jie Mi ◽  
...  

Abstract Background The traditional Chinese medicine NiuBeiXiaoHe (NBXH) extract and Chinese medicine preparation JieHeWan (JHW) exhibit anti-tuberculosis effects. The anti- tuberculosis effect of NBXH was compared with that of JHW to elucidate the mechanism of action of NBXH. Methods BALB/c mice aged 6-8 weeks were randomly divided into a normal control group, Tuberculosis (TB) model group, JHW treatment group, and NBXH treatment group. After 3 and 13 weeks of treatment, the therapeutic effect in each group was evaluated by comparing lung histopathology, lung and liver colony counts, the number of spots representing effector T cells secreting IFN-γ in an ELISPOT, and the levels of Th1, Th2, and Th17 cytokines, which were measured by a cytometric bead array (CBA). Mouse RNA samples were subjected to transcriptome sequencing. Results After 13 weeks of treatment, the mean histopathological lesion area of the NBXH group was significantly smaller than that of the TB model group (P < 0.05). Compared with those in the TB model group, the lung colony counts in the JHW and NBXH groups were significantly decreased (P < 0.05), and the IL-2 and IL-4 levels in the NBXH group were significantly increased (P < 0.05). NBXH partly restored significant changes in gene expression caused by Mycobacterium tuberculosis (M. tuberculosis) infection. According to GO and KEGG analyses, the changes in biological process (BP), cell composition (CC) and molecular function (MF) terms and in signaling pathways caused by NBXH and JHW treatment were not completely consistent, but they were mainly related to the immune response and inflammatory response in the mouse TB model. Conclusions NBXH had therapeutic effects similar to those of JHW in improving lung histopathology, reducing lung colony counts, and regulating the levels of cytokines. NBXH restored significant changes in gene expression and repaired cell damage caused by M. tuberculosis infection by regulating immune-related pathways, which clarified the mechanism of action of NBXH.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 331
Author(s):  
Jung-Yun Lee ◽  
Tae Yang Kim ◽  
Hanna Kang ◽  
Jungbae Oh ◽  
Joo Woong Park ◽  
...  

Excess body weight is a major risk factor for type 2 diabetes (T2D) and associated metabolic complications, and weight loss has been shown to improve glycemic control and decrease morbidity and mortality in T2D patients. Weight-loss strategies using dietary interventions produce a significant decrease in diabetes-related metabolic disturbance. We have previously reported that the supplementation of low molecular chitosan oligosaccharide (GO2KA1) significantly inhibited blood glucose levels in both animals and humans. However, the effect of GO2KA1 on obesity still remains unclear. The aim of the study was to evaluate the anti-obesity effect of GO2KA1 on lipid accumulation and adipogenic gene expression using 3T3-L1 adipocytes in vitro and plasma lipid profiles using a Sprague-Dawley (SD) rat model. Murine 3T3-L1 preadipocytes were stimulated to differentiate under the adipogenic stimulation in the presence and absence of varying concentrations of GO2KA1. Adipocyte differentiation was confirmed by Oil Red O staining of lipids and the expression of adipogenic gene expression. Compared to control group, the cells treated with GO2KA1 significantly decreased in intracellular lipid accumulation with concomitant decreases in the expression of key transcription factors, peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (CEBP/α). Consistently, the mRNA expression of downstream adipogenic target genes such as fatty acid binding protein 4 (FABP4), fatty acid synthase (FAS), were significantly lower in the GO2KA1-treated group than in the control group. In vivo, male SD rats were fed a high fat diet (HFD) for 6 weeks to induced obesity, followed by oral administration of GO2KA1 at 0.1 g/kg/body weight or vehicle control in HFD. We assessed body weight, food intake, plasma lipids, levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) for liver function, and serum level of adiponectin, a marker for obesity-mediated metabolic syndrome. Compared to control group GO2KA1 significantly suppressed body weight gain (185.8 ± 8.8 g vs. 211.6 ± 20.1 g, p < 0.05) with no significant difference in food intake. The serum total cholesterol, triglyceride, and low-density lipoprotein (LDL) levels were significantly lower in the GO2KA1-treated group than in the control group, whereas the high-density lipoprotein (HDL) level was higher in the GO2KA1 group. The GO2KA1-treated group also showed a significant reduction in ALT and AST levels compared to the control. Moreover, serum adiponectin levels were significantly 1.5-folder higher than the control group. These in vivo and in vitro findings suggest that dietary supplementation of GO2KA1 may prevent diet-induced weight gain and the anti-obesity effect is mediated in part by inhibiting adipogenesis and increasing adiponectin level.


Author(s):  
Li Wang ◽  
Yiwen Zhang ◽  
Jiajun Zhong ◽  
Yuan Zhang ◽  
Shuisheng Zhou ◽  
...  

Objective: The efficacy of mesenchymal stem cell (MSC) therapy in acetaminophen-induced liver injury has been investigated in animal experiments, but individual studies with a small sample size cannot be used to draw a clear conclusion. Therefore, we conducted a systematic review and meta-analysis of preclinical studies to explore the potential of using MSCs in acetaminophen-induced liver injury. Methods: Eight databases were searched for studies reporting the effects of MSCs on acetaminophen hepatoxicity. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines were used. SYRCLE’s risk of bias tool for animal studies was applied to assess the methodological quality. A meta-analysis was performed by using RevMan 5.4 and STATA/SE 16.0 software. Results: Eleven studies involving 159 animals were included according to PRISMA statement guidelines. Significant associations were found for MSCs with the levels of alanine transaminase (ALT) (standardized mean difference (SMD) − 2.58, p < 0.0001), aspartate aminotransferase (AST) (SMD − 1.75, p = 0.001), glutathione (GSH) (SMD 3.7, p < 0.0001), superoxide dismutase (SOD) (SMD 1.86, p = 0.022), interleukin 10 (IL-10) (SMD 5.14, p = 0.0002) and tumor necrosis factor-α (TNF-α) (SMD − 4.48, p = 0.011) compared with those in the control group. The subgroup analysis showed that the tissue source of MSCs significantly affected the therapeutic efficacy (p < 0.05). Conclusion: Our meta-analysis results demonstrate that MSCs could be a potential treatment for acetaminophen-related liver injury.


2018 ◽  
Vol 67 (2) ◽  
pp. 338-345 ◽  
Author(s):  
Jianshuang Li ◽  
Tong Li ◽  
Shuo Li ◽  
Lipeng Xie ◽  
Yi-Lin Yang ◽  
...  

Previous studies have demonstrated that CXCL12/CXCR4 axis is closely related to tumors such as malignant pleural mesothelioma (MPM). This research was conducted in order to detect whether CXCL12/CXCR4 inhibitors could restrain MPM and have a synergistic effect with chemotherapy, also to investigate the relationship of CXCL12/CXCR4 with other gene expressions in MPM. Forty mice were injected MPM cells and randomly divided into four groups: the PBS (control group), AMD3100 (CXCR4-CXCL12 antagonist), pemetrexed and AMD3100 plus pemetrexed. The mice were treated respectively for duration of 3 weeks. The size, bioluminescence and weight of tumors were measured. The differences between gene expressions in each group were analyzed. The tumor weights of each treatment group were lower than that of the control group (p<0.05). The bioluminescence of the tumor of the AMD3100 treatment group and the AMD3100 plus pemetrexed treatment group were lower than that of the control group (p<0.05), and AMD3100 was shown to have synergistic effects with pemetrexed (p<0.05). Among the 2.5 billion genes, several hundreds of genes expressed differently between groups. Results show that AMD3100 and pemetrexed can inhibit the growth of MPM in vivo, also that there is a better result if both are used together. Our findings suggest that CXCL12/CXCR4 axis affects a certain amount of gene expression in MPM.


Sign in / Sign up

Export Citation Format

Share Document