scholarly journals KARAKTERISASI FORMULASI EMULSIFIABLE CONCENTRATE (EC) INSEKTISIDA DELTAMETRIN

2018 ◽  
Vol 13 (1) ◽  
pp. 64
Author(s):  
Siti Raudhatul Kamali

Deltametrin [(S)-α-cyano-(3-phenoxypheyl) methyl 3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane carboxylate]  sudah digunakan secara luas untuk pengendalian hama. Penelitian ini bertujuan untuk melakukan karakterisasi terhadap formulasi Emulsifiable Concentrate (EC) insektisida deltametrin. Formulasi ini menggunakan surfaktan Tween 80 dan ko-surfaktan Poli Etilen Glikol (PEG) 400 dengan perbandingan 20% : 80%. Morfologi Emulsifiable Concentrate ditentukan menggunakan mikroskop optik dan konfirmasi struktur molekul menggunakan FTIR. Nilai Hydrophylic-Lipophylic Balance (HLB) yang dihasilkan dari kombinasi surfaktan dan ko-surfaktan sebesar 13,48. Ukuran rata-rata diameter droplet yang dihasilkan sebesar 1 μm. Karakterisasi FTIR menunjukkan bahwa proses emulsifikasi deltametrin menjadi Emulsifiable Concentrate (EC) tidak mengubah bahan aktif deltametrin. Gugus C=N yang merupakan gugus utama pada deltametrin muncul pada puncak 2259,64 cm-1, C-Br pada 530,73 cm-1 dan regang C=O aromatik pada 1715,85 cm-1.  Kata kunci: Insektisida Deltametrin, Emulsifiable Concentrate (EC) 

2021 ◽  
Vol 19 (1) ◽  
pp. 184-188
Author(s):  
Farida Hayati ◽  
Lutfi Chabib ◽  
Faiza Dea Sekarraras ◽  
Wan Syarifah Faizah

Abstract This study aimed to identify the effectiveness of SNEDDS of Pegagan Leaf Ethanol Extract (PLE) to reduce fasting blood glucose (FBG) levels in zebrafish. Centella asiatica (L.) Urb. or pegagan is among the medicinal plants widely used to treat diabetes in Indonesia. Maceration was employed with 70% ethanol to obtain a viscous extract for the formulation of SNEDDS with Capryol 90, Tween 80, and PEG 400 (1:6:3). Antihyperglycemic testing was conducted on five groups, consisting of normal, positive control, negative control, P I treatment, and P II treatment. On Day 1, all except the normal group was induced with 300 mg alloxan and soaked in 2% glucose solution for 7 days. On day 8, the treatment consisted of 25 mg/2 L metformin for the positive control, 100 mg/2 L SNEDDS for P I, 200 mg/2 L SNEDDS for P II, and no treatment for the negative control. The SNEDDS characterization obtained 100.6 ± 3.12 nm particle size and −7.93 ± 0.66 mV zeta potential, indicating that the SNEDDS had fulfilled the requirements of good preparation. The antidiabetic activity test found a 69.90% decline in FBG levels in 100 mg/2 L SNEDDS and 72.20% in 200 mg/2 L SNEDDS.


Author(s):  
SARAH LABIB ◽  
MOHAMED NASR ◽  
MOHAMED NASR

Objective: The main objective of this study was to develop atorvastatin calcium (ATR) as an oral drug delivery system for a P-glycoprotein (P-gp) substrate drug using different pharmaceutical excipients that inhibit P-glycoprotein and evaluate the influence of nanocrystals on the dissolution characteristics and bioavailability compared to the plain drug. Methods: A nanosuspension was prepared by Solvent-antisolvent precipitation method using a solvent containing stabilizer that act as a p-gp inhibitor dissolved in distilled water as polyethylene glycol 300, polyethylene glycol 400 (PEG 300, PEG 400), tween 20 and tween 80 while the solvent selected for atorvastatin calcium was methanol. The concentrations were as follows: PEG 300 and 400 = 0.25% w/v, tween 20 and 80 = 0.75% v/v. Nanocrystals were extracted from the suspension and characterized. Results: Particle size of the drug was 1307±127.79 nm while the formulas prepared ranged from 223±17.67 to 887±58.12 nm. Pure ATR had a saturated solubility of 0.059±0.005 mg/ml and the prepared nanocrystals ranged from 0.32±0.021 to 0.88±0.019 mg/ml. The Percentage of drug released of plain atorvastatin calcium reached 41.49% while the formula ranged from 44.32 to 61.5%. Both XRD and SEM discussed the degree of crystallinity as follows: F1<F2<F4<F3<ATR. Conclusion: 0.3% of PEG 300 and PEG 400 were not enough to formulate proper nanocrystals while 0.75% tween 20 and tween 80 achieved acceptable formulas. F4 which is prepared with tween 80 exhibited the highest enhancement in saturated solubility, dissolution rate and subsequently expected to have improved oral bioavailability.


Author(s):  
Nurhabibah Nurhabibah ◽  
A.K. Nugroho ◽  
Ronny Martien ◽  
Endang Lukitaningsih

This study aimed to determine the solubility of lovastatin (LV) in different oil, surfactant, and co-surfactant using the high-performance liquid chromatography method. LV was solubility studies in different vehicle. The different vehicle used almond oil, sunflower oil, oleic acid, olive oil, soybean oil, and corn oil, isoprophyl myristate, myoglyol, tween 80, tween 20, and cremophor R.H. 40, propylene glycol, and PEG 400. Each of them was added lovastatin until saturated. The mixtures were mixing, sonicating, putting in the water bath and standing for 24 hours, then centrifugated. Each of the aliquot 2 µL diluted with acetonitrile and determination of concentration lovastatin using HPLC, with detector ultraviolet at 237 nm. Before determinate LV validated, and curve calibration at range 2-16 µg/mL was made. This study using the HPLC method with detector UV 237 nm, Agilent C 18 (4.6 x 150 mm 5 µ) column, and acetonitrile: water (70:30 v/v) as mobile phase. Calibration curve of lovastatin at the range 2-16 µg/mL with linear regression 0.999. Accuracy and precision showed that. Lovastatin has high soluble in oleic acid, tween 80, and PEG 400.


Author(s):  
MAZAYA FADHILA ◽  
ABDUL MUN IM ◽  
MAHDI JUFRI

Objective: White mulberry (Morus alba) root extract has terpenoid, flavonoid, and stilbene compounds. The stilbenes, oxyresveratrol and resveratrol, have antioxidant and antityrosinase activities. Nanocarriers can help active ingredients to be delivered in a more efficient manner. The advantages of nanoemulsion on products include increased penetration, biocompatibility, and low toxicity due to its non-ionic properties and have the ability to combine the properties of lipophilic and hydrophilic active ingredients. The objective of this study was to prepare, characterize, and evaluate the in vitro skin penetration of M. alba root extract nanoemulsion. Methods: The M. alba root extract was prepared by ionic liquid-based microwave-assisted extraction method. Nanoemulsion was optimized and prepared using virgin coconut oil (VCO), Tween 80, and polyethylene glycol 400 (PEG 400) by aqueous phase-titration method to construct pseudoternary phase diagram. M. alba root extract nanoemulsion was characterized for droplet size, viscosity, zeta potential, and physical stability tests for 12 weeks. In vitro skin penetration of oxyresveratrol from nanoemulsion was determined by the Franz diffusion cell and was compared by macroemulsion preparation, then analyzed by high-performance liquid chromatography method. Results: Based on pseudoternary phase diagram, nanoemulsion of white mulberry root extract contained of 2% VCO and 18% mixture of surfactant Tween 80 and PEG 400 (1:1) was chosen. Nanoemulsion has average globule size of 81.61 nm, with polydispersity index 0.22, and potential zeta −1.56 mV. The cumulative penetration of oxyresveratrol from nanoemulsion was 55.86 μg/cm2 with flux of 6.53 μg/cm2/h, while regular emulsion was 32.45 μg/cm2 with flux of 3.5501 μg/cm2/h. Conclusion: Nanoemulsion of white mulberry root extract was penetrated deeper than regular emulsion.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 175
Author(s):  
Seol Hwa Seo ◽  
Eunhwan Kim ◽  
Yechan Joo ◽  
Juseung Lee ◽  
Kyung Taek Oh ◽  
...  

Indirubin is an active component of Dang Gui Long Hui Wan, which has been used in traditional Chinese medicine to treat inflammatory diseases as well as for the prevention and treatment of human cancer, such as chronic myeloid leukemia. The therapeutic effects of indirubin analogs have been underestimated due to its poor water solubility and low bioavailability. To improve the solubility and bioavailability of indirubin analogs, we prepared a mixed micellar formulation with Kolliphor® EL and Tween 80 as surfactants, and PEG 400 as a co-surfactant, followed by complexation with (2-hydroxyproply)-β-cyclodextrin at appropriate ratios. Overall, improving the solubility and skin penetration of indirubin analogs can increase clinical efficacy and provide maximum flux through the skin.


2020 ◽  
Vol 11 (2) ◽  
pp. 1294-1301
Author(s):  
Geethanjali K ◽  
Vaiyana Rajesh C

The present study was aimed to develop a Self Nano Emulsifying Delivery System of Ezetimibe (EZM) for enhancing its dissolution rate. Ezetimibe is a cholesterol absorption inhibitor, being a lipophilic drug due to its low solubility EZM shows a low dissolution profile. The SNEDDS formulation consisted of excipients Cinnamon oil, Tween 80, PEG 400 as the Oil, Surfactant and Co-surfactant. Twelve formulations with different ratios of Oil, Surfactant and Co-surfactant were prepared. The liquid SNEDDS were then converted into Solid form by adsorption technique using Avicel PH 101 and Aerosil 200 as adsorbents. The liquid SNEDDS was characterised for Particle size, Emulsification time, Dispersibility, percentage transmittance, PCM, Centrifugation, Cloud Point and Freeze thaw cycle. The solid form was characterized for the flow property, SEM, Drug content and in-vitro dissolution. Among the twelve formulations F6 formulation was found to have a particle size of 196 nm and PDI of 0.123. F6 formulation was selected as the best and it was made into solid by adsorption onto solid carriers. The F6 formulation consisted of the 25% Cinnamon oil, 50% tween 80 and 25% PEG 400. The in-vitro dissolution rate of the prepared formulation was compared with the marketed formulation. The in-vitro dissolution data showed that the drug release at the end of 60 mins from marketed formulation was 63.75 % and from SNEDDS formulation was         90.62 %. The dissolution rate of the prepared SNEDDS was increased by 1.42 times than the marketed formulation. The increase in the dissolution rate shows that SNEDDS is a suitable drug delivery system to enhance the rate of dissolution of Ezetimibe.


2015 ◽  
Vol 2 (1) ◽  
pp. 8 ◽  
Author(s):  
Yandi Syukri ◽  
Agung Endro Nugroho ◽  
Ronny Martien ◽  
Endang Lukitaningsih

Penelitian ini bertujuan untuk mengembangkan analisis kuantitatif untuk penentuan kadar isolat andrographolide dari tanaman sambiloto (Andrographis paniculata) dan pelarut yang berbeda untuk studi awal untuk pembuatan Self Nanoemulsifying Drug Delivery System (SNEDDS) menggunakan KCKT. Pemisahan menggunakan kolom Sunfire C18 dengan campuran isokratik metanol dan air dengan perbandingan 6: 4, v / v sebagai fase gerak. Metode untuk menentukan isolat andrographolide menunjukkan presisi yang memadai, dengan RSD lebih kecil dari 1%. Akurasi dianalisis dengan menambahkan andrografolid standar, dan didapatkan nilai perolehan kembali yang baik untuk semua konsentrasi yang digunakan. Metode HPLC yang dikembangkan dalam penelitian ini menunjukkan spesifisitas dan selektivitas dengan linearitas dalam rentang kerja dan presisi dan akurasi yang baik, sehingga sangat cocok untuk menentukan kandungan isolat andrografolida. Dibandingkan dengan standar, kemurnian isolat andrografolida adalah 95,74 ± 0,29%. Penelitian awal untuk menentukan kelarutan tertinggi isolat andrographolid adalah dalam fasa minyak Capryol-90 1,226 ± 0,009 mg mL-1, surfaktan tween 80 2,965 ± 0.014 mg mL-1 dan co-surfaktan PEG 400 6,074 ± 0,101 mg mL-1. Dapat disimpulkan, metode ini cocok digunakan untuk penentuan kelarutan dari isolat andrographolide untuk pembuatan SNEDDS.


2020 ◽  
Vol 16 (2) ◽  
pp. 130-143
Author(s):  
Yandi Syukri ◽  
Septiani Eka Cahyani ◽  
Bambang Hernawan Nugroho

Background: Mefenamic acid is a non-steroidal anti-inflammatory drug (NSAID) with low solubility in water. Self-Nanoemulsifying Drug Delivery Systems (SNEDDS) play a role to improve the solubility and bioavailability of mefenamic acid. Objective: This study aimed to determine the stability of mefenamic acid in SNEDDS formulation through various stability studies. Methods: The stability studies conducted consisted of centrifugation test, heating-cooling cycle test, freezethaw cycle test, robustness to dilution, accelerated storage test, and determination of drug content. Results: The centrifugation test, heating-cooling cycle test, and freeze-thaw cycle test showed no phase separation in the samples. The robustness to dilution and accelerated storage test resulted in 2 formulas of mefenamic acid loaded SNEDDS having good stability with 10% oleic acid, 80% tween 80, 10% PEG 400 and 10% oleic acid, 70% tween 80, 20% PEG 400. The determination of drug content in both of these formulations showed 98.20 ± 0.04% and 90.98 ± 0.06%. Conclusion: The SNEDDS formulation of mefenamic acid in this study had good stability. Keywords: SNEDDS, mefenamic acid, stability study, oleic acid


2019 ◽  
Vol 11 (1) ◽  
pp. 144
Author(s):  
Tri Ujilestari ◽  
Bambang Ariyadi ◽  
Ronny Martien ◽  
Zuprizal . ◽  
Nanung Danar Dono

Objective: Focus of this study was to optimize and to characterize the self-Nano emulsifying drug delivery system using lemongrass (Cymbopogon citratus) essential oil.Methods: The optimum formulas were analyzed using a D-Optimal mixture experimental design and performed using a Design Expert® Ver. 7.1.5. Formulation variables which include in the design were: oil component X1 (a mixture of Cymbopogon citratus essential oil and virgin coconut oil/VCO), surfactant X2 (Tween 80), and co-surfactant (PEG 400), while emulsification time in a sec (Y1) and transmittance in percent (Y2) as responses.Results: The optimum formula for SNEDDS in the current study were: Cymbopogon citratus essential oil (7.147%), VCO (7.147%), Tween 80 (71.417%), and PEG 400 (14.290%). From the optimizing formula can be shown that the mean of droplet size, polydispersity-index, zeta potential, and viscosity were: 13.17±0.06 nm, 0.17±0.05,-20.90±1.47 mV, 200±0mPa. s (n=3), respectively. Furthermore, the optimized formula has passed the thermodynamic stability test; meanwhile, transmission electron microscopy displayed spherical shape.Conclusion: The optimized SNEDDS formula was improving solubility of poorly soluble Cymbopogon citratus essential oil.


2021 ◽  
Vol 16 ◽  
Author(s):  
Saloni Dalwadi ◽  
Vaishali T. Thakkar ◽  
Hardik B. Rana

Background: A combination of Glimepiride and Boswellia serrata extract reduces Neuropathic diabetic complications by reducing the peroxidase level and improving the antioxidant level. The hybrid Liquisolid method includes a combination of two methods, kneading and the Liquisolid method to enhance drug in-vitro performance. Objective: The objective of this study was to enhance the in-vitro performance of antidiabetics drugs. Method: Tablets of the fixed dose combination of Glimepiride and Boswellia serrata extract were formulated by kneading method followed by Liquisolid method. Screening of non-volatile solvents, carriers, and coating materials was performed. The design of the experiment was applied to optimize the formulation and validation was done to validate the obtained model from the design of the experiment. 3 level 2 factorial (32) Design was applied by using Design expert software 11. Various pre-compression parameters were performed to check the quality of the formulation. Results: Screening of excipients for kneading method, Glimepiride with PVP K 30 (5%), and Boswellia serrata extract with Poloxamer 188 (13%) give optimum drug release. For the Liquisolid method Propylene glycol: PEG 400: Tween 80 (1:2:4) ratio for Glimepiride and PEG 400: Tween 80 (1:3) ratio for Boswellia serrata extract were selected. Common carrier and coating material for both drug Syloid XDP 3150: Aeroperl 300 (3:1) ratio were selected, which improves the in-vitro performance of the drug. Conclusion: This study gives an overall understanding of the impact of excipients on the quality of formulation, a critical knowledge to the implementation of this kind of novel application of Liquisolid systems.


Sign in / Sign up

Export Citation Format

Share Document