RNA sequencing and microarray analysis are helpful techniques to detect obesity-related lncRNAs. LncRNA can alter cholesterol metabolism and can be a target for gene therapy

2021 ◽  
Author(s):  
Moataz Dowaidar

Recent study has connected obesity disorders including improper lipid, cholesterol, and glucose metabolism to lncRNAs, which may lead to obesity or type 2 diabetes. RNA sequencing and microarray analysis are helpful techniques to detect obesity-related lncRNAs. However, the important participation of several lncRNAs in controlling obesity problems is yet unexplored.Several lncRNAs interact with and influence lipid, cholesterol, and glucose metabolism genes, proteins, and enzymes. However, the number of lncRNAs found is substantially smaller than the number of lncRNAs detailing the lipid, cholesterol, and glucose metabolic activity. This is due in part to the complexity of the action mechanism of lncRNAs and the lack of reliable methodologies to predict functional properties of lncRNA. Consequently, if technologies exist to uncover and define lncRNAs connected to obesity syndrome, it will disclose possible therapeutic goals and drive the creation of novel, very useful ways for obesity therapy. Moreover, lncRNA can alter cholesterol accumulation, synthesis, intracellular transit, and excretion. Whether lncRNAs impact cholesterol homeostasis through cholesterol esterification, deesterification, and/or absorption remained unresolved till recently. It's worth highlighting that lncRNAs have poor species conservation levels. According to a recent study, about 10% of lncRNAs are preserved between mammals and chickens and 2% between mammals and fish,106 showing that preserved lncRNAs between species may play a crucial role in modulating the metabolism of obesity in animal evolution. Despite their poor conservation between species, however, most nonconservative lncRNAs have the potential to be transformed into nucleic acid medications to treat obesity syndrome in animal studies or for therapeutic advantages.LncRNAs play a function in food intake, associated with obesity diseases. LncRNA was revealed to have a role in HFD-induced obesity diseases, which have intergenerational characteristics. Complete decipherment of lncRNA with regard to metabolic control of obesity might open the way for precise medication and prevention of obesity transmission from generation to generation. Moreover, as indicated in this study review, lncRNA-based therapeutic approaches may minimize genetic toxicity and maybe treat obesity problems. Natural products may have a lot of promise in the treatment of obesity syndrome and additional studies are needed. Future investigation may focus on finding effective and nontoxic strategies to introduce lncRNA interference agents to obese patients via natural products and gene therapy. As a consequence, discovering a unique mechanism for influencing obesity on the expression of lncRNA might help us better understand the pathophysiology of obesity syndromes and support the design of new tools to prevent and cure obesity syndrome, especially from food.

Brain ◽  
2019 ◽  
Vol 142 (8) ◽  
pp. 2432-2450 ◽  
Author(s):  
Radhia Kacher ◽  
Antonin Lamazière ◽  
Nicolas Heck ◽  
Vincent Kappes ◽  
Coline Mounier ◽  
...  

AbstractDysfunctions in brain cholesterol homeostasis have been extensively related to brain disorders. The main pathway for brain cholesterol elimination is its hydroxylation into 24S-hydroxycholesterol by the cholesterol 24-hydrolase, CYP46A1. Increasing evidence suggests that CYP46A1 has a role in the pathogenesis and progression of neurodegenerative disorders, and that increasing its levels in the brain is neuroprotective. However, the mechanisms underlying this neuroprotection remain to be fully understood. Huntington’s disease is a fatal autosomal dominant neurodegenerative disease caused by an abnormal CAG expansion in huntingtin’s gene. Among the multiple cellular and molecular dysfunctions caused by this mutation, altered brain cholesterol homeostasis has been described in patients and animal models as a critical event in Huntington’s disease. Here, we demonstrate that a gene therapy approach based on the delivery of CYP46A1, the rate-limiting enzyme for cholesterol degradation in the brain, has a long-lasting neuroprotective effect in Huntington’s disease and counteracts multiple detrimental effects of the mutated huntingtin. In zQ175 Huntington’s disease knock-in mice, CYP46A1 prevented neuronal dysfunctions and restored cholesterol homeostasis. These events were associated to a specific striatal transcriptomic signature that compensates for multiple mHTT-induced dysfunctions. We thus explored the mechanisms for these compensations and showed an improvement of synaptic activity and connectivity along with the stimulation of the proteasome and autophagy machineries, which participate to the clearance of mutant huntingtin (mHTT) aggregates. Furthermore, BDNF vesicle axonal transport and TrkB endosome trafficking were restored in a cellular model of Huntington’s disease. These results highlight the large-scale beneficial effect of restoring cholesterol homeostasis in neurodegenerative diseases and give new opportunities for developing innovative disease-modifying strategies in Huntington’s disease.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Vijay R. Varma ◽  
H. Büşra Lüleci ◽  
Anup M. Oommen ◽  
Sudhir Varma ◽  
Chad T. Blackshear ◽  
...  

AbstractThe role of brain cholesterol metabolism in Alzheimer’s disease (AD) remains unclear. Peripheral and brain cholesterol levels are largely independent due to the impermeability of the blood brain barrier (BBB), highlighting the importance of studying the role of brain cholesterol homeostasis in AD. We first tested whether metabolite markers of brain cholesterol biosynthesis and catabolism were altered in AD and associated with AD pathology using linear mixed-effects models in two brain autopsy samples from the Baltimore Longitudinal Study of Aging (BLSA) and the Religious Orders Study (ROS). We next tested whether genetic regulators of brain cholesterol biosynthesis and catabolism were altered in AD using the ANOVA test in publicly available brain tissue transcriptomic datasets. Finally, using regional brain transcriptomic data, we performed genome-scale metabolic network modeling to assess alterations in cholesterol biosynthesis and catabolism reactions in AD. We show that AD is associated with pervasive abnormalities in cholesterol biosynthesis and catabolism. Using transcriptomic data from Parkinson’s disease (PD) brain tissue samples, we found that gene expression alterations identified in AD were not observed in PD, suggesting that these changes may be specific to AD. Our results suggest that reduced de novo cholesterol biosynthesis may occur in response to impaired enzymatic cholesterol catabolism and efflux to maintain brain cholesterol levels in AD. This is accompanied by the accumulation of nonenzymatically generated cytotoxic oxysterols. Our results set the stage for experimental studies to address whether abnormalities in cholesterol metabolism are plausible therapeutic targets in AD.


2021 ◽  
Vol 22 (11) ◽  
pp. 5692
Author(s):  
Mayra Colardo ◽  
Noemi Martella ◽  
Daniele Pensabene ◽  
Silvia Siteni ◽  
Sabrina Di Bartolomeo ◽  
...  

Neurotrophins constitute a family of growth factors initially characterized as predominant mediators of nervous system development, neuronal survival, regeneration and plasticity. Their biological activity is promoted by the binding of two different types of receptors, leading to the generation of multiple and variegated signaling cascades in the target cells. Increasing evidence indicates that neurotrophins are also emerging as crucial regulators of metabolic processes in both neuronal and non-neuronal cells. In this context, it has been reported that neurotrophins affect redox balance, autophagy, glucose homeostasis and energy expenditure. Additionally, the trophic support provided by these secreted factors may involve the regulation of cholesterol metabolism. In this review, we examine the neurotrophins’ signaling pathways and their effects on metabolism by critically discussing the most up-to-date information. In particular, we gather experimental evidence demonstrating the impact of these growth factors on cholesterol metabolism.


2021 ◽  
Vol 22 (11) ◽  
pp. 6074
Author(s):  
Maciej Danielewski ◽  
Agnieszka Matuszewska ◽  
Adam Szeląg ◽  
Tomasz Sozański

Nutrition determines our health, both directly and indirectly. Consumed foods affect the functioning of individual organs as well as entire systems, e.g., the cardiovascular system. There are many different diets, but universal guidelines for proper nutrition are provided in the WHO healthy eating pyramid. According to the latest version, plant products should form the basis of our diet. Many groups of plant compounds with a beneficial effect on human health have been described. Such groups include anthocyanins and iridoids, for which it has been proven that their consumption may lead to, inter alia, antioxidant, cholesterol and lipid-lowering, anti-obesity and anti-diabetic effects. Transcription factors directly affect a number of parameters of cell functions and cellular metabolism. In the context of lipid and cholesterol metabolism, five particularly important transcription factors can be distinguished: liver X receptor (LXR), peroxisome proliferator-activated receptor-α (PPAR-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer binding protein α (C/EBPα) and sterol regulatory element-binding protein 1c (SREBP-1c). Both anthocyanins and iridoids may alter the expression of these transcription factors. The aim of this review is to collect and systematize knowledge about the impact of anthocyanins and iridoids on transcription factors crucial for lipid and cholesterol homeostasis.


PPAR Research ◽  
2009 ◽  
Vol 2009 ◽  
pp. 1-15 ◽  
Author(s):  
Tiangang Li ◽  
John Y. L. Chiang

Bile acids are amphipathic molecules synthesized from cholesterol in the liver. Bile acid synthesis is a major pathway for hepatic cholesterol catabolism. Bile acid synthesis generates bile flow which is important for biliary secretion of free cholesterol, endogenous metabolites, and xenobiotics. Bile acids are biological detergents that facilitate intestinal absorption of lipids and fat-soluble vitamins. Recent studies suggest that bile acids are important metabolic regulators of lipid, glucose, and energy homeostasis. Agonists of peroxisome proliferator-activated receptors (PPARα, PPARγ, PPARδ) regulate lipoprotein metabolism, fatty acid oxidation, glucose homeostasis and inflammation, and therefore are used as anti-diabetic drugs for treatment of dyslipidemia and insulin insistence. Recent studies have shown that activation of PPARαalters bile acid synthesis, conjugation, and transport, and also cholesterol synthesis, absorption and reverse cholesterol transport. This review will focus on the roles of PPARs in the regulation of pathways in bile acid and cholesterol homeostasis, and the therapeutic implications of using PPAR agonists for the treatment of metabolic syndrome.


Cholesterol ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Eric Coomes ◽  
Edwin S. L. Chan ◽  
Allison B. Reiss

Methotrexate is a disease-modifying antirheumatic drug commonly used to treat inflammatory conditions such as rheumatoid arthritis which itself is linked to increased cardiovascular risk. Treatments that target inflammation may also impact the cardiovascular system. While methotrexate improves cardiovascular risk, inhibition of the cyclooxygenase (COX)-2 enzyme promotes atherosclerosis. These opposing cardiovascular influences may arise from differing effects on the expression of proteins involved in cholesterol homeostasis. These proteins, ATP-binding cassette transporter (ABC) A1 and cholesterol 27-hydroxylase, facilitate cellular cholesterol efflux and defend against cholesterol overload. Methotrexate upregulates expression of cholesterol 27-hydroxylase and ABCA1 via adenosine release, while COX-2 inhibition downregulates these proteins. Adenosine, acting through the A2A and A3 receptors, may upregulate proteins involved in reverse cholesterol transport by cAMP-PKA-CREB activation and STAT inhibition, respectively. Elucidating underlying cardiovascular mechanisms of these drugs provides a framework for developing novel cardioprotective anti-inflammatory medications, such as selective A2A receptor agonists.


2016 ◽  
Vol 116 (09) ◽  
pp. 565-577 ◽  
Author(s):  
Gemma Brufau ◽  
Marion J. J. Gijbels ◽  
Ine M. J. Wolfs ◽  
Saskia van der Velden ◽  
Chantal C. H. Pöttgens ◽  
...  

SummaryInflammatory responses and cholesterol homeostasis are interconnected in atherogenesis. Interleukin (IL)-10 is an important anti-inflammatory cytokine, known to suppress atherosclerosis development. However, the specific cell types responsible for the atheroprotective effects of IL-10 remain to be defined and knowledge on the actions of IL-10 in cholesterol homeostasis is scarce. Here we investigated the functional involvement of myeloid IL-10-mediated atheroprotection. To do so, bone marrow from IL-10 receptor 1 (IL-10R1) wild-type and myeloid IL-10R1-deficient mice was transplanted to lethally irradiated female LDLR-/- mice. Hereafter, mice were given a high cholesterol diet for 10 weeks after which atherosclerosis development and cholesterol metabolism were investigated. In vitro, myeloid IL-10R1 deficiency resulted in a pro-inflammatory macrophage phenotype. However, in vivo significantly reduced lesion size and severity was observed. This phenotype was associated with lower myeloid cell accumulation and more apoptosis in the lesions. Additionally, a profound reduction in plasma and liver cholesterol was observed upon myeloid IL-10R1 deficiency, which was reflected in plaque lipid content. This decreased hypercholesterolaemia was associated with lowered very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) levels, likely as a response to decreased intestinal cholesterol absorption. In addition, IL-10R1 deficient mice demonstrated substantially higher faecal sterol loss caused by increased non-biliary cholesterol efflux. The induction of this process was linked to impaired ACAT2-mediated esterification of liver and plasma cholesterol. Overall, myeloid cells do not contribute to IL-10-mediated atheroprotection. In addition, this study demonstrates a novel connection between IL-10-mediated inflammation and cholesterol homeostasis in atherosclerosis. These findings make us reconsider IL-10 as a beneficial influence on atherosclerosis.Supplementary Material to this article is available online at www.thrombosis-online.com.


1999 ◽  
Vol 277 (6) ◽  
pp. R1675-R1682 ◽  
Author(s):  
Karen L. Kind ◽  
Peter M. Clifton ◽  
Arkadi I. Katsman ◽  
Maria Tsiounis ◽  
Jeffrey S. Robinson ◽  
...  

Epidemiological studies suggest that retarded growth before birth is associated with increased plasma total and low-density lipoprotein (LDL) cholesterol concentrations in adult life. Thus perturbations of prenatal growth may permanently alter cholesterol metabolism. To determine directly whether restriction of prenatal nutrition and growth alters postnatal cholesterol homeostasis, the plasma cholesterol response to cholesterol feeding (0.25% cholesterol) was examined in adult guinea pig offspring of ad libitum-fed or moderately undernourished mothers. Maternal undernutrition (85% ad libitum intake throughout pregnancy) reduced birth weight (−13%). Plasma total cholesterol was higher prior to and following 6 wk cholesterol feeding in male offspring of undernourished mothers compared with male offspring of ad libitum-fed mothers ( P< 0.05). The influence of birth weight on cholesterol metabolism was examined by dividing the offspring into those whose birth weight was above (high) or below (low) the median birth weight. Plasma total cholesterol concentrations prior to cholesterol feeding did not differ with size at birth, but plasma total and LDL cholesterol were 31 and 34% higher, respectively, following cholesterol feeding in low- compared with high-birth weight males ( P < 0.02). The response to cholesterol feeding in female offspring was not altered by variable maternal nutrition or size at birth. Covariate analysis showed that the effect of maternal undernutrition on adult cholesterol metabolism could be partly accounted for by alterations in prenatal growth. In conclusion, maternal undernutrition and small size at birth permanently alter postnatal cholesterol homeostasis in the male guinea pig.


2019 ◽  
Vol 5 (3) ◽  
pp. 00117-2019 ◽  
Author(s):  
Pitchumani Sivakumar ◽  
John Ryan Thompson ◽  
Ron Ammar ◽  
Mary Porteous ◽  
Carly McCoubrey ◽  
...  

Idiopathic pulmonary fibrosis (IPF), the scarring of lung parenchyma resulting in the loss of lung function, remains a fatal disease with a significant unmet medical need. Patients with severe IPF often develop acute exacerbations resulting in the rapid deterioration of lung function, requiring transplantation. Understanding the pathophysiological mechanisms contributing to IPF is key to develop novel therapeutic approaches for end-stage disease.We report here RNA-sequencing analyses of lung tissues from a cohort of patients with transplant-stage IPF (n=36), compared with acute lung injury (ALI) (n=11) and nondisease controls (n=19), that reveal a robust gene expression signature unique to end-stage IPF. In addition to extracellular matrix remodelling pathways, we identified pathways associated with T-cell infiltration/activation, tumour development, and cholesterol homeostasis, as well as novel alternatively spliced transcripts that are differentially regulated in the advanced IPF lung versus ALI or nondisease controls. Additionally, we show a subset of genes that are correlated with percent predicted forced vital capacity and could reflect disease severity.Our results establish a robust transcriptomic fingerprint of an advanced IPF lung that is distinct from previously reported microarray signatures of moderate, stable or progressive IPF and identifies hitherto unknown candidate targets and pathways for therapeutic intervention in late-stage IPF as well as biomarkers to characterise disease progression and enable patient stratification.


2019 ◽  
Vol 149 (6) ◽  
pp. 996-1003 ◽  
Author(s):  
An Tien Nguyen ◽  
Sami Althwab ◽  
Haowen Qiu ◽  
Richard Zbasnik ◽  
Carlos Urrea ◽  
...  

ABSTRACT Background Pinto beans contain multiple active agents such as polyphenols, flavonoids, and saponins, and have been shown to lower cholesterol, but the mechanisms involved in this effect have not been explored. Objective This study was to investigate the changes in cholesterol metabolism in response to whole pinto beans (wPB) and their hulls (hPB) supplemented into a diet rich in saturated fat and the molecular mechanisms potentially responsible for these effects in hamsters. Methods Forty-four 9-wk-old male Golden Syrian hamsters were randomly assigned to 4 diet groups (n = 11), including a 5% (wt:wt) fat diet [normal-fat diet (NF)], a 15% (wt:wt) fat diet [diet rich in saturated fat (HSF), saturated fatty acids accounted for 70% of total fatty acids], or HSF supplemented with 5% (wt:wt) wPB or 0.5% (wt:wt) hPB for 4 wk. Plasma, liver, intestinal, and fecal samples were collected to evaluate multiple cholesterol markers and gene targets. Results The plasma non-high-density lipoprotein (non-HDL) concentration was significantly reduced in the wPB- and hPB-supplemented groups by 31.9 ± 3.5% and 53.6 ± 3.2%, respectively, compared with the HSF group (P < 0.01), to concentrations comparable with the NF group. The wPB-supplemented hamsters had significantly lower liver cholesterol (45.1%, P < 0.001) and higher fecal cholesterol concentrations (94.8%, P = 0.001) than those fed the HSF. The expressions of hepatic 3-hydroxy-3-methylglutaryl CoA reductase (Hmgcr) and small intestinal acyl-coenzyme A: cholesterol acyltransferase 2 (Acat2) were significantly decreased in animals administered wPB (by 89.1% and 63.8%, respectively) and hPB (by 72.9% and 47.7%, respectively) compared with their HSF-fed counterparts (P < 0.05). The wPB normalized the expression of Acat2 to the level of the NF group. Conclusion Pinto beans remediated high cholesterol induced by HSF in male hamsters by decreasing hepatic cholesterol synthesis and intestinal cholesterol absorption, effects which were partially exerted by the hulls.


Sign in / Sign up

Export Citation Format

Share Document