scholarly journals Impacts of Substrate Thinning on FPGA Performance and Reliability

Author(s):  
Darin Leonhardt ◽  
Thomas Beechem ◽  
Matthew Cannon ◽  
Nathaniel Dodds ◽  
Matthew Fellows ◽  
...  

Abstract Global thinning of integrated circuits is a technique that enables backside failure analysis and radiation testing. Prior work also shows increased thresholds for single-event latchup and upset in thinned devices. We present impacts of global thinning on device performance and reliability of 28 nm node field programmable gate arrays (FPGA). Devices are thinned to values of 50, 10, and 3 microns using a micromachining and polishing method. Lattice damage, in the form of dislocations, extend about 1 micron below the machined surface. The damage layer is removed after polishing with colloidal SiO2 slurry. We create a 2D finite-element model with liner elasticity equations and flip-chip packaged device geometry to show that thinning increases compressive global stress in the Si, while C4 bumps increase stress locally. Measurements of stress using Raman spectroscopy qualitatively agree with our stress model but also reveal the need for more complex structural models to account for nonlinear effects occurring in devices thinned to 3 microns and after temperature cycling to 125°C. Thermal imaging shows that increased local heating occurs with increased thinning but the maximum temperature difference across the 3-micron die is less than 2°C. Ring oscillators (ROs) programmed throughout the FPGA fabric slow about 0.5% after thinning compared to full thickness values. Temperature cycling the devices to 125°C further decreases RO frequency about 0.5%, which we attribute to stress changes in the Si.

2012 ◽  
Vol 482-484 ◽  
pp. 651-654
Author(s):  
Na Li ◽  
Feng Ye

Aiming at the structural feature of starting water separator, a 3-D finite element model of temperature field is proposed. The starting water separator of a Ultra Supercritical Boiler(USB) has been numerically simulated by using of finite element soft ware Ansys. The boundary condition of the separator is determined. All of the working conditions are simulated. The results have the same distribution laws with the monitoring data of power plant. The maximum temperature difference between out wall and inner wall occurs in the temperature-rise period during the cold start-up, but the value between top wall and bottom wall is very lower. The simulation results can not only provide a basis for the thermal stress analysis and the life loss calculation but also provide rationalization proposal for the plant safe operation.


2012 ◽  
Vol 522 ◽  
pp. 201-205
Author(s):  
You Xi Lin ◽  
Cong Ming Yan ◽  
Zheng Ying Lin

mprovements in modeling and simulation of metal cutting processes are required in advanced manufacturing technologies. A three dimensional fully thermal mechanical coupled finite element model had been applied to simulate and analyze the cutting temperature for high speed milling of TiAl6V4 titanium alloy. The temperature distribution induced in the tool and the workpiece was predicted. The effects of the milling speed and radial depth of cut on the maximum cutting temperature in the tool was investigated. The results show that only a rising of temperature in the lamella of the machined surface is influenced by the milling heat. The maximum temperature in the tool increases with increasing radial depth of cut and milling speed which value is 310°C at a speed of 60 m/min and increases to 740°C at 400m/min. The maximum temperature is only effective on a concentrated area at the cutting edge and the location of the maximum temperature moves away from the tool tip for higher radial depths of milling. The predicted temperature distribution during the cutting process is consistent with the experimental results given in the literature. The results obtained from this study provide a fundamental understanding the process mechanics of HSM of TiAl6V4 titanium alloys.


2020 ◽  
Vol 31 (5) ◽  
pp. 719-736
Author(s):  
Yang Li ◽  
Xing Shen ◽  
Xiping Kou ◽  
Li Yu

In the low-temperature environment, temperature reduction affects the properties and actuation performance of the piezoelectric stack. To solve this problem, a practical and effective heating and insulation structure, based on the working characteristics of the piezoelectric stack, is proposed in this article. Thermal conductivity models of the piezoelectric stack under two heating modes—whole heating and local heating—are developed and validated by finite element simulation analysis. The heating and insulation structure has been built according to the theoretical model, and the experimental test is conducted to measure the temperature and property variation of the piezoelectric stack, as well as its actuation performance with ambient temperature drop. The experimental results show that the theoretical and simulation results are consistent with the experimental results, as the maximum temperature difference between them is 4.3°C, which indicates the correctness and accuracy of the theoretical and finite element models. Besides, the properties and the actuation performance are almost unchanged within the range from 10°C to −70°C, which verifies the effectiveness and feasibility of the heating and insulation structure. Consequently, this structure can be redesigned according to the principles proposed in this article, and widely used in protecting piezoelectric stacks of different sizes and low-temperature environments; the application range of the piezoelectric stack can also be extended to lower temperatures.


2010 ◽  
Vol 97-101 ◽  
pp. 3963-3966
Author(s):  
Yong Cheng Lin ◽  
Jing Hong Lu ◽  
Jun Zhang

Fatigue failure of solder joints is a serious reliability concern in area array technologies. A non-linear finite element model was made to study the effects of underfill material and substrate flexibility on solder joint thermal fatigue. Accelerated temperature cycling loading was imposed to evaluate the reliability of solder joints in test flip chip assembly. The results show that the underfill material and substrate flexibility can improve the distribution of stress/strain and reduce the magnitude of stress/strain in the solder joints. Therefore, the reliability of solder joints under thermal cycling condition can be enhanced by applying underfill material and selecting the Flex substrates during temperature cycling.


Author(s):  
Rama R. Goruganthu ◽  
David Bethke ◽  
Shawn McBride ◽  
Tom Crawford ◽  
Jonathan Frank ◽  
...  

Abstract Spray cooling is implemented on an engineering tool for Time Resolved Emission measurements using a silicon solid immersion lens to achieve high spatial resolution and for probing high heat flux devices. Thermal performance is characterized using a thermal test vehicle consisting of a 4x3 array of cells each with a heater element and a thermal diode to monitor the temperature within the cell. The flip-chip packaged TTV is operated to achieve uniform heat flux across the die. The temperature distribution across the die is measured on the 4x3 grid of the die for various heat loads up to 180 W with corresponding heat flux of 204 W/cm2. Using water as coolant the maximum temperature differential across the die was about 30 °C while keeping the maximum junction temperature below 95 °C and at a heat flux of 200 W/cm2. Details of the thermal performance of spray cooling system as a function of flow rate, coolant


Author(s):  
R.K. Jain ◽  
T. Malik ◽  
T.R. Lundquist ◽  
Q.S. Wang ◽  
R. Schlangen ◽  
...  

Abstract Backside circuit edit techniques on integrated circuits (ICs) are becoming common due to increase number of metal layers and flip chip type packaging. However, a thorough study of the effects of these modifications has not been published. This in spite of the fact that the IC engineers have sometimes wondered about the effects of backside circuit edit on IC behavior. The IC industry was well aware that modifications can lead to an alteration of the intrinsic behavior of a circuit after a FIB edit [1]. However, because alterations can be controlled [2], they have not stopped the IC industry from using the FIB to successfully reconfigure ICs to produce working “silicon” to prove design and mask changes. Reliability of silicon device structures, transistors and diodes, are investigated by monitoring intrinsic parameters before and after various steps of modification.


Author(s):  
Steve K. Hsiung ◽  
Kevan V. Tan ◽  
Andrew J. Komrowski ◽  
Daniel J. D. Sullivan ◽  
Jan Gaudestad

Abstract Scanning SQUID (Superconducting Quantum Interference Device) Microscopy, known as SSM, is a non-destructive technique that detects magnetic fields in Integrated Circuits (IC). The magnetic field, when converted to current density via Fast Fourier Transform (FFT), is particularly useful to detect shorts and high resistance (HR) defects. A short between two wires or layers will cause the current to diverge from the path the designer intended. An analyst can see where the current is not matching the design, thereby easily localizing the fault. Many defects occur between or under metal layers that make it impossible using visible light or infrared emission detecting equipment to locate the defect. SSM is the only tool that can detect signals from defects under metal layers, since magnetic fields are not affected by them. New analysis software makes it possible for the analyst to overlay design layouts, such as CAD Knights, directly onto the current paths found by the SSM. In this paper, we present four case studies where SSM successfully localized short faults in advanced wire-bond and flip-chip packages after other fault analysis methods failed to locate the defects.


Author(s):  
Olivier Crépel ◽  
Philippe Descamps ◽  
Patrick Poirier ◽  
Romain Desplats ◽  
Philippe Perdu ◽  
...  

Abstract Magnetic field based techniques have shown great capabilities for investigation of current flows in integrated circuits (ICs). After reviewing the performances of SQUID, GMR (hard disk head technologies) and MTJ existing sensors, we will present results obtained on various case studies. This comparison will show the benefit of each approach according to each case study (packaged devices, flip-chip circuits, …). Finally we will discuss on the obtained results to classify current techniques, optimal domain of applications and advantages.


2019 ◽  
Vol 56 (4) ◽  
pp. 750-758
Author(s):  
Nicolae Navodariu ◽  
Mihai Branzei ◽  
Robert Ciocoiu ◽  
Ion Ciuca ◽  
Razvan Coman ◽  
...  

Flame straightening is a technology process used to eliminate deformations. This method relies on local heating of the material to correct geometry or damaged parts. In the local automobile services its main use is for repairs of less critical deformed components. The maximum temperature and thermal gradient, heating time, cooling rate and number of heating cycles affect the mechanical properties since local heating can alter material microstructure. The aim of this research was to determine the mechanical characteristics of thin steel plates repaired by local heating associated with plastic deformation (similar to hot working) and cold straightening (similar to local cold working) for automotive side and door panels made of structural steel. Thin sheet plates, 0.9mm thickness, were deformed by impact and repaired by local heating using the flame and induction heating then plastically deformed while hot as well as straightened without heating. The heat repaired samples were studied by light microscopy to determine microstructure change and samples were tensile tested to determine their mechanical characteristics. Local excessive grain growth generates anisotropy, the assembly behaves as a composite material with regions that show significant plastic deformations while others little or no deformations at al. Without procedures adjusted to each material repairs involving heating are to be avoided, cold working should be employed when replacement is not possible.


2010 ◽  
Vol 135 ◽  
pp. 238-242
Author(s):  
Yue Ming Liu ◽  
Ya Dong Gong ◽  
Wei Ding ◽  
Ting Chao Han

In this paper, effective finite element model have been developed to simulation the plastic deformation cutting in the process for a single particle via the software of ABAQUS, observing the residual stress distribution in the machined surface, the experiment of grinding cylindrical workpiece has been brought in the test of super-high speed grinding, researching the residual stress under the machined surface by the method of X-ray diffraction, which can explore the different stresses from different super-high speed in actual, and help to analyze the means of reducing the residual stresses in theory.


Sign in / Sign up

Export Citation Format

Share Document