Ergonomic aspects of material separation process modeling on stationary screw surfaces

2021 ◽  
pp. 86-95
Author(s):  
S. Pylypaka ◽  
◽  
A. Nesvidomin ◽  

The motion of material particles on gravitational surfaces, ie the motion of particles on surfaces under the action of its own weight, is used in special devices for their separation by physical and mechanical properties. For this purpose stationary screw surfaces of a steady step are applied. A number of papers have now considered the relationship between the kinematic parameters of motion, the coefficient of friction and the design parameters of the separator, when its surface is a deployable helicoid. The purpose of the study is to investigate helical surfaces with different design parameters in order to improve their separation ability through mathematical and geometric modeling of the process without making surface models. The problem of finding the trajectory of a material particle on the surface under the action of its own weight is preceded by the problem of finding the trajectory on an inclined plane. If a material particle with a certain initial velocity vо and a certain angle of inclination to the horizon falls on an inclined plane, it will move along a certain curve (in the absence of friction and air resistance, the trajectory will be a parabola). A system of equations is obtained, which describes the motion of a material point on the gravitational surface in the general case. If it is created for a specific surface, nonlinear and numerical methods must be used to integrate it. Modern software products allow not only to find the trajectory of the particle, but also to show it on the surface and even make an animation that essentially replaces high-speed shooting. This approach makes it possible to study the kinematic parameters of motion on different helical surfaces without full-scale samples of these surfaces, which significantly reduces the cost of finding the right surfaces. The motion of particles along a helical conoid and a deployable helicoid is considered. Simulation of the motion of a material particle on helical surfaces and its study by modern means of numerical integration and visualization have shown that for different surfaces the nature of the motion of the particle will also be different. When moving on the surface of the helical conoid, the particle in the presence of friction first accelerates, and then stops at a considerable distance from its axis. To prevent this, you need to take a limited compartment of the conoid both in height and on its periphery. When a particle moves on the surface of a deployed helicoid, its velocity becomes constant over time, and the trajectory after that will be a helical line. Key words: particle motion, helical surfaces, helical conoid, deployable helicoid, simulation

Author(s):  
V.I. Kolpakov ◽  
N.A. Kudyukov

The paper introduces the results of numerical simulation of the functioning of shaped charges, whose liners are made of different materials. As a result of their functioning, these charges form high-speed elements. Typically, liners for such charges are produced by the cold stamping technology. An alternative method for producing the liners is metal spinning. Moreover, a spin formed liner is expected to have higher physical and mechanical properties compared to a stamped liner made of the same material and having the same geometrical parameters. To reveal the patterns of molding high-speed elements from stamped and spin formed liners, the action of shaped charges comprised of steel or copper segmental liners of small bending, was simulated numerically using the apparatus of continuum mechanics. The influence of the liner manufacture method was taken into account by varying the values of the physical and mechanical characteristics of the liner material. The design parameters of the simulated charge, with the exception of the liner bending, during the calculation study remained unchanged and corresponded to the parameters of the currently used samples. Following the numerical experiments results, the study shows that the elements molded from spin formed liners are less likely to become fractured while being formed and are also more integral (continuous) in comparison to the elements molded from stamped shaped charge liners.


1980 ◽  
Vol 23 (3) ◽  
pp. 630-645 ◽  
Author(s):  
Gerald Zimmermann ◽  
J.A. Scott Kelso ◽  
Larry Lander

High speed cinefluorography was used to track articulatory movements preceding and following full-mouth tooth extraction and alveoloplasty in two subjects. Films also were made of a control subject on two separate days. The purpose of the study was to determine the effects of dramatically altering the structural dimensions of the oral cavity on the kinematic parameters of speech. The results showed that the experimental subjects performed differently pre and postoperatively though the changes were in different directions for the two subjects. Differences in both means and variabilities of kinematic parameters were larger between days for the experimental (operated) subjects than for the control subject. The results for the Control subject also showed significant differences in the mean values of kinematic variables between days though these day-to-day differences could not account for the effects found pre- and postoperatively. The results of the kinematic analysis, particularly the finding that transition time was most stable over the experimental conditions for the operated subjects, are used to speculate about the coordination of normal speech.


2021 ◽  
Vol 13 (5) ◽  
pp. 2756
Author(s):  
Federica Vitale ◽  
Maurizio Nicolella

Because the production of aggregates for mortar and concrete is no longer sustainable, many attempts have been made to replace natural aggregates (NA) with recycled aggregates (RA) sourced from factories, recycling centers, and human activities such as construction and demolition works (C&D). This article reviews papers concerning mortars with fine RA from C&D debris, and from the by-products of the manufacturing and recycling processes of building materials. A four-step methodology based on searching, screening, clustering, and summarizing was proposed. The clustering variables were the type of aggregate, mix design parameters, tested properties, patents, and availability on the market. The number and the type of the clustering variables of each paper were analysed and compared. The results showed that the mortars were mainly characterized through their physical and mechanical properties, whereas few durability and thermal analyses were carried out. Moreover, few fine RA were sourced from the production waste of construction materials. Finally, there were no patents or products available on the market. The outcomes presented in this paper underlined the research trends that are useful to improve the knowledge on the suitability of fine RA from building-related processes in mortars.


2021 ◽  
pp. 0309524X2110039
Author(s):  
Amgad Dessoky ◽  
Thorsten Lutz ◽  
Ewald Krämer

The present paper investigates the aerodynamic and aeroacoustic characteristics of the H-rotor Darrieus vertical axis wind turbine (VAWT) combined with very promising energy conversion and steering technology; a fixed guide-vanes. The main scope of the current work is to enhance the aerodynamic performance and assess the noise production accomplished with such enhancement. The studies are carried out in two phases; the first phase is a parametric 2D CFD simulation employing the unsteady Reynolds-averaged Navier-Stokes (URANS) approach to optimize the design parameters of the guide-vanes. The second phase is a 3D CFD simulation of the full turbine using a higher-order numerical scheme and a hybrid RANS/LES (DDES) method. The guide-vanes show a superior power augmentation, about 42% increase in the power coefficient at λ = 2.75, with a slightly noisy operation and completely change the signal directivity. A remarkable difference in power coefficient is observed between 2D and 3D models at the high-speed ratios stems from the 3D effect. As a result, a 3D simulation of the capped Darrieus turbine is carried out, and then a noise assessment of such configuration is assessed. The results show a 20% increase in power coefficient by using the cap, without significant change in the noise signal.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
I. S. Amiri ◽  
P. G. Kuppusamy ◽  
Ahmed Nabih Zaki Rashed ◽  
P. Jayarajan ◽  
M. R. Thiyagupriyadharsan ◽  
...  

AbstractHigh-speed single-mode fiber-optic communication systems have been presented based on various hybrid multiplexing schemes. Refractive index step and silica-doped germanium percentage parameters are also preserved during their technological boundaries of attention. It is noticed that the connect design parameters suffer more nonlinearity with the number of connects. Two different propagation techniques have been used to investigate the transmitted data rates as a criterion to enhance system performance. The first technique is soliton propagation, where the control parameters lead to equilibrium between the pulse spreading due to dispersion and the pulse shrinking because of nonlinearity. The second technique is the MTDM technique where the parameters are adjusted to lead to minimum dispersion. Two cases are investigated: no dispersion cancellation and dispersion cancellation. The investigations are conducted over an enormous range of the set of control parameters. Thermal effects are considered through three basic quantities, namely the transmission data rates, the dispersion characteristics, and the spectral losses.


Author(s):  
Zijian Guo ◽  
Tanghong Liu ◽  
Wenhui Li ◽  
Yutao Xia

The present work focuses on the aerodynamic problems resulting from a high-speed train (HST) passing through a tunnel. Numerical simulations were employed to obtain the numerical results, and they were verified by a moving-model test. Two responses, [Formula: see text] (coefficient of the peak-to-peak pressure of a single fluctuation) and[Formula: see text] (pressure value of micro-pressure wave), were studied with regard to the three building parameters of the portal-hat buffer structure of the tunnel entrance and exit. The MOPSO (multi-objective particle swarm optimization) method was employed to solve the optimization problem in order to find the minimum [Formula: see text] and[Formula: see text]. Results showed that the effects of the three design parameters on [Formula: see text] were not monotonous, and the influences of[Formula: see text] (the oblique angle of the portal) and [Formula: see text] (the height of the hat structure) were more significant than that of[Formula: see text] (the angle between the vertical line of the portal and the hat). Monotonically decreasing responses were found in [Formula: see text] for [Formula: see text] and[Formula: see text]. The Pareto front of [Formula: see text] and[Formula: see text]was obtained. The ideal single-objective optimums for each response located at the ends of the Pareto front had values of 1.0560 for [Formula: see text] and 101.8 Pa for[Formula: see text].


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 295
Author(s):  
Pao-Hsiung Wang ◽  
Yu-Wei Huang ◽  
Kuo-Ning Chiang

The development of fan-out packaging technology for fine-pitch and high-pin-count applications is a hot topic in semiconductor research. To reduce the package footprint and improve system performance, many applications have adopted packaging-on-packaging (PoP) architecture. Given its inherent characteristics, glass is a good material for high-speed transmission applications. Therefore, this study proposes a fan-out wafer-level packaging (FO-WLP) with glass substrate-type PoP. The reliability life of the proposed FO-WLP was evaluated under thermal cycling conditions through finite element simulations and empirical calculations. Considering the simulation processing time and consistency with the experimentally obtained mean time to failure (MTTF) of the packaging, both two- and three-dimensional finite element models were developed with appropriate mechanical theories, and were verified to have similar MTTFs. Next, the FO-WLP structure was optimized by simulating various design parameters. The coefficient of thermal expansion of the glass substrate exerted the strongest effect on the reliability life under thermal cycling loading. In addition, the upper and lower pad thicknesses and the buffer layer thickness significantly affected the reliability life of both the FO-WLP and the FO-WLP-type PoP.


2014 ◽  
Vol 532 ◽  
pp. 41-45 ◽  
Author(s):  
Myung Jin Chung

Analytic model of electromagnetic linear actuator in the function of electric and geometric parameters is proposed and the effects of the design parameters on the dynamic characteristics are analyzed. To improve the dynamic characteristics, optimal design is conducted by applying sequential quadratic programming method to the analytic model. This optimal design method aims to minimize the response time and maximize force efficiency. By this procedure, electromagnetic linear actuator having high-speed characteristics is developed.


Author(s):  
G. A. Atanov ◽  
A. N. Semco ◽  
O. P. Petrenko ◽  
E. S. Geskin ◽  
V. Samardzic ◽  
...  

The paper is concerned with improvement of the devices for formation of super high-speed fluid jets termed hydro cannon. Two modes of the energy injection into the fluid (the piston impact and the powder explosion) are considered and advantages of the use of the gunpowder are determined. A numerical technique for prediction of the jet formation, developed previously by one of the authors is applied for description of the velocity and pressure fields within the hydro cannon. Effect of the design parameters on the fluid acceleration is explored and suggestions for improvement of the hydro cannon design are made.


1999 ◽  
Author(s):  
William G. Broadhead ◽  
D. Theodore Zinke

Abstract The design of an airbag restraint system presents a classic engineering challenge. There are numerous design parameters that need to be optimized to cover the wide range of occupant sizes, occupant positions and vehicle collision modes. Some of the major parameters that affect airbag performance include, the airbag inflator characteristics, airbag size and shape, airbag vent size, steering column collapse characteristics, airbag cover characteristics, airbag fold pattern, knee bolsters, seat, seat belt characteristics, and vehicle crush characteristics. Optimization of these parameters can involve extremely costly programs of sled tests and full scale vehicle crash tests. Federal Motor Vehicle Safety Standards (FMVSS) with regard to airbag design are not specific and allow flexibility in component characteristics. One design strategy, which is simplistic and inexpensive, is to utilize a very fast, high output gas generator (inflator). This ensures that the bag will begin restraining the occupant soon after deployment and can make up for deficiencies in other components such as inadequate steering column collapse or an unusually stiff vehicle crush characteristic. The use of such inflators generally works well for properly positioned occupants in moderate to high-speed frontal collisions by taking advantage of the principle of ridedown. When an airbag quickly fills the gap between the occupant and the instrument panel or steering wheel it links him to the vehicle such that he utilizes the vehicle’s front-end crush to help dissipate his energy, thus reducing the restraint forces. Unfortunately, powerful airbag systems can be injurious to anyone in the path of the deploying airbag. This hazard is present for short statured individuals, out of position children or any occupant in a collision that results in extra ordinary crash sensing time. Currently, the National Highway Traffic Safety Administration (NHTSA) is proposing to rewrite FMVSS 208 to help reduce such hazards.


Sign in / Sign up

Export Citation Format

Share Document