scholarly journals The Chicken Utilization Of Α-Keratin Of Waste Chicken Feathers In Enviromental As Adsorben Of Procion Red And Remazol Yellow Dye

2019 ◽  
Vol 1 (3) ◽  
pp. 12-14
Author(s):  
SAGA DERMAWAN DWI LAKSANA ◽  
ERICK RYAN YULIANTO ◽  
EDI PRAMONO

as the adsorbent. The adsorption characterization of activated chicken feathers by Na2S 0.1 N and non-activated chicken feathers was determined. Effect of variation experimental parameters pH, Contact time and variation dye concentration also being investigated in a batch adsorption method. Procion and Remazol Yelloow were characterized by UV-Vis spectroscopy VV The results show that the contact time and pH condition for adsorption equilibrium are 120 min for activated chicken feathers and 100 min for chicken feathers which were not activated by Na2S at pH 3. Procion red dye absorption by activated and not activated chicken feathers follows Freundlich isotherm and follow Langmuir isothrem. For remazol yellow dye absorption by activated and not activated chicken feathers follows Langmuir isotherm and Freundlich isothrem and the reaction kinetics follow the Ho equation.   Keywords: adsorption, chicken feather, procion red, remazol yellow

Gels ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 23
Author(s):  
Gaurav Sharma ◽  
Amit Kumar ◽  
Ayman A. Ghfar ◽  
Alberto García-Peñas ◽  
Mu. Naushad ◽  
...  

The present research demonstrates the facile fabrication of xanthan gum-cl-poly(acrylamide-co-alginic acid) (XG-cl-poly(AAm-co-AA)) hydrogel by employing microwave-assisted copolymerization. Simultaneous copolymerization of acrylamide (AAm) and alginic acid (AA) onto xanthan gum (XG) was carried out. Different samples were fabricated by changing the concentrations of AAm and AA. A sample with maximum swelling percentage was chosen for adsorption experiments. The structural and functional characteristics of synthesized hydrogel were elucidated using diverse characterization tools. Adsorption performance of XG-cl-poly(AAm-co-AA) hydrogel was investigated for the removal of noxious cadmium (Cd(II)) ions using batch adsorption from the aqueous system, various reaction parameters optimized include pH, contact time, temperature, and concentration of Cd(II) ions and temperature. The maximum adsorption was achieved at optimal pH 7, contact time 180 min, temperature 35 °C and cadmium ion centration of 10 mg·L−1. The XG-cl-poly(AAm-co-AA) hydrogel unveiled a very high adsorption potential, and its adsorption capacities considered based on the Langmuir isotherm for Cd(II) ions was 125 mg·g−1 at 35 °C. The Cd(II) ions adsorption data fitted nicely to the Freundlich isotherm and pseudo-first-order model. The reusability investigation demonstrated that hydrogel retained its adsorption capacity even after several uses without significant loss.


2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Sabarish Radoor ◽  
Jasila Karayil ◽  
Aswathy Jayakumar ◽  
Jyotishkumar Parameswaranpillai ◽  
Suchart Siengchin

AbstractIn the present work, we have developed a mesoporous silicalite-1 using CMC as a template for the removal of MB from aqueous solution. The synthesized silicalite-1 were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Energy-dispersive X-ray spectroscopy (EDAX) and N2 adsorption–desorption isotherm (BET). XRD and FT-IR analysis confirmed the formation of crystallinity and development of MFI structure in the mesoporous silicalite-1. The adsorption of MB dye on mesoporous silicalite-1 was conducted by batch adsorption method. The effect of various parameters such as adsorbent dosage, initial dye concentration, contact time and temperature on the dye uptake ability of silicalite-1 was investigated. The operating parameters for the maximum adsorption are silicalite-1 dosage (0.1 wt%), contact time (240 min), initial dye concentration (10 ppm) and temperature (30 ℃). The MB dye removal onto mesoporous silicalite-1 followed pseudo-second-order kinetic and Freundlich isotherm. The silicalite-1 exhibits 86% removal efficiency even after six adsorption–desorption cycle. Therefore, the developed mesoporous silicalite-1 is an effective eco-friendly adsorbent for MB dye removal from aqueous environment.


2015 ◽  
Vol 43 (3) ◽  
pp. 277-281 ◽  
Author(s):  
M Rahman ◽  
S Gul ◽  
M Ajmal ◽  
A Iqbal ◽  
Akk Achakzai

Removal of cadmium from aqueous solution was studied by using Quetta pine (Pinus halepensis Mill.) leaves. Batch adsorption experiments were performed as a function of appropriate equilibrium time, pH, concentration of adsorbate and amount of adsorbent. The optimum pH required for maximum adsorption was found to be 7.0 and the maximum contact time for the equilibrium was 30 minutes at adsorbent dose of 10 g. The maximum adsorption efficiency of cadmium removal was 98.50%. The results were better fitted by Langmuir than Freundlich isotherm. The separation factor of equilibrium 0.12 and 0.67 showed that Quetta pine leaves are good adsorbent of cadmium from aqueous solution DOI: http://dx.doi.org/10.3329/bjb.v43i3.21598 Bangladesh J. Bot. 43(3): 277-281, 2014 (December)


2011 ◽  
Vol 8 (2) ◽  
pp. 803-808 ◽  
Author(s):  
U. V. Ladhe ◽  
S. K. Wankhede ◽  
V. T. Patil ◽  
P. R. Patil

Adsorptions of Erichrome Black T dye in aqueous solution on cotton stem activated carbon have been studied as a function of contact time, concentration and pH. Effect of various experimental parameters has been investigated at 39±1°C under batch adsorption technique. The result shows that cotton stem activated carbon adsorbs dye to a sufficient extent. The physicochemical characterization and chemical kinetics was also examined for the same dye. The overall result shows that it can be fruitfully used for the removal of dye from wastewaters.


2021 ◽  
Author(s):  
Samina Zaman ◽  
Md. Nayeem Mehrab ◽  
Md. Shahnul Islam ◽  
Gopal Chandra Ghosh ◽  
Tapos Kumar Chakraborty

Abstract This study investigates the potential applicability of hen feather (HF) to remove methyl red (MR) dye from aqueous solution with the variation of experimental conditions: contact time (1–180 min), pH (4–8), initial dye concentration (5–50 mg/L) and adsorbent dose (3–25 g/L). Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) evaluate the surface morphology and chemistry of HF, respectively. The maximum removal of MR by HF was 92% when the optimum conditions were initial MR dye concentration 05 mg/L, pH 4.0, adsorbent dose 07.0 g/L and 90.0 min equilibrium contact time. Langmuir isotherm (R2 = 0.98) was more suited than Freundlich isotherm (R2 = 0.96) for experimental data, and the highest monolayer adsorption capacity was 6.02 mg/g. The kinetics adsorption data fitted well to pseudo-second-order model (R2 = 0.999) and more than one process were involved during the adsorption mechanism but film diffusion was the potential rate-controlling step. The findings of the study show that HF is a very effective and low-cost adsorbent for removing MR dye from aqueous solutions.


2021 ◽  
Vol 17 (4) ◽  
pp. 1-19
Author(s):  
Azhar Jabbar Bohan ◽  
Ghaed Khalef Salman ◽  
Ghaidaa Majeed Jaid

The effect of Nano composite materials (CuFe2O4 and ZnFe2O4) was studied for removal of heavy metals (Cd (II) and Pb (II)) from wastewater by batch adsorption method and explain their effect on the antimicrobial effectiveness on gram positive and negative bacteria. Nano composite materials were characterized by XRD where the result indicates that the average crystallite sizes were around 36.19 nm for ZnFe2O4 and 12.22 nm for CuFe2O4.The effect of contact time, adsorbent dose, pH and type of adsorbents was used to find the optimum condition for removal of Cd(II) and Pb(II) ions .The equilibrium adsorption data was good fitted to the Langmuir and Freundlich isotherm models, and the pseudo first-order kinetic model showed the excellent fit in adsorption equilibrium capacity. The best pH used for removal was 7. The good removal reaches at the time 45 min for cadmium and need more time for lead. When increasing dosage of adsorbents, the removal efficiency increases. Freundlich and Langmuir isotherm gave the best fit experimental data. Also, antibacterial effects of this nano particles demonstrated the effect of CuFe2O4 NPs on bacteria more than used ZnFe2O4 NPs, and the percentage of bacterial death was increased according to increase the concentration of this materials.


2013 ◽  
Vol 28 (1-2) ◽  
pp. 113-122
Author(s):  
Kedar Nath Ghimire ◽  
Deepak Wagle ◽  
Suman Lal Shrestha

An effective chemically modified adsorbent based on sugarcane waste has been prepared by treating with concentrated sulphuric acid in 2:1weight/volume ratio. Thus prepared adsorbent has been found to be effective in the adsorption of chromium from aqueous medium. The efficacy of the adsorbent in the removal of chromium was evaluated by batch adsorption method. The effect of initial concentration, contact time and pH of the solution was investigated. The maximum adsorption capacity onto this adsorbent was found to be 195 mg/g at their optimal pH 1 at which unmodified bagasse has only 58 mg/g. The characterization of adsorbent was done by determining surface area and Boehm’s titration method. Freundlich isotherm and pseudo-second order kinetic model gave better explanation of the adsorption process.


2019 ◽  
Vol 31 (6) ◽  
pp. 1343-1348
Author(s):  
K.V. SATHASIVAM ◽  
N.K. FULORIA ◽  
S. FULORIA ◽  
P.J. DARSHENEE ◽  
R. XAVIER ◽  
...  

Present study was intended to explore the biosorption of Cu(II) and Pb(II) ions in aqueous solution using activated carbon biosynthesized from macro-algae Kappaphycus alvarezii under different experimental parameters. Activated carbon was produced via zinc chloride chemical activation method. The effect of parameters such as pH, temperature over biosorption, amount of adsorbents, initial Cu(II) and Pb(II) aqueous concentration, and contact time were studies. The pH 4.0 for adsorption of Cu(II) and Pb(II), and metal ions uptake contact time of 60 min were considered as optimum. Equilibrium data of biosorption were analyzed by models of Langmuir and Freundlich isotherm at different initial Cu(II) and Pb(II) aqueous solutions concentration. Fruendlich adsorption isotherm model fitted well into biosorption data with a regression value of 0.9986. Thermodynamic parameters such as change in change of enthalpy (ΔHº), change of entropy (ΔSº) and Gibbs free energy (ΔGº) were also determined.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Adugna Nigatu Alene ◽  
Gietu Yirga Abate ◽  
Adere Tarekegne Habte

Background. Dyes are one of the most hazardous materials in industrial effluents which can cause several health problems in living organisms. The removal of dye from colored effluents has attracted increasing attention in the last decade. In this study, raw, beneficiated, and activated waste ash were evaluated as adsorbents for removal of methylene blue (MB) from aqueous solution by the batch adsorption method. Comprehensive characterization studies were carried out on each bioadsorbent, such as proximate analyses, bulk density, specific surface area, point of zero charge, pH, and Fourier transform infrared (FTIR) spectroscopy (which shows functional groups on adsorbents surface). The effects of pH, adsorbent dosage, initial dye concentration, and contact time were determined in order to know the optimum condition and adsorption potential of the adsorbents. The methylene blue (MB) removal efficiency of raw, beneficiated, and activated bioadsorbents from aqueous solutions was found to be 95.212%, 89.172%, and 84.504%, respectively. It is reported that adsorption efficiency of MB on each adsorbent was quite different due to electrostatic and dispersion interaction between the dye molecules and the surface property of the adsorbents. The obtained results were well fitted with the Freundlich isotherm model, and the adsorption process follows the pseudo-second-order kinetics model for all adsorbents. In fact, the results showed that raw, beneficiated, and activated waste ash bioadsorbents could be employed as effective and economical alternative material in the near future.


2013 ◽  
Vol 726-731 ◽  
pp. 695-699
Author(s):  
Li Hong ◽  
Si Xiang Wang ◽  
Yong Liu ◽  
Yue Chun Zhang

Humic acid adsorbent modified with metal ions was prepared by gel polymerization and named gel composite of metal ion and humic acid, which abbreviated GCMH to uptake fluoride from drinking water. The samples were measured by X-ray diffraction (XRD) patterns and scanning electron microscope (SEM) images. Fluoride adsorption onto the synthesized samples was investigated by batch adsorption method. In previous works, detailed studies were carried out to investigate the effect of contact time, adsorbent dose, initial solution pH, temperatures and co-existing anions. The maximum fluoride removal was obtained at pH7. Presence of HCO3− adversely affected the adsorption of fluoride. The optimum absorption conditions were at the dose of 10g/L, temperature of water of 55°Cand contact time of 6hs.


Sign in / Sign up

Export Citation Format

Share Document