Structural, Morphological and Mechanical Characterisation of Molybdenum Nitride Thin Films Deposited by a Plasma Focus Device

2017 ◽  
Vol 41 (12) ◽  
pp. 699-704
Author(s):  
Mohammad Taghi Hosseinnejad ◽  
Mehdi Ettehadi-Abari ◽  
Naser Panahi

This research focuses on the characterisation of nanostructured molybdenum nitride (MoN) thin films deposited on glass substrates at room temperature using a low-energy (1.1 kJ) plasma focus device. The nanostructure, surface morphology, electrical resistivity and mechanical properties of MoN thin films were studied in terms of the number of shots required to prepare them. X-ray diffraction (XRD) analysis indicated that all of the deposited layers were polycrystalline in nature, possessing the γ-Mo2N (fcc) structure. The XRD results also revealed that the degree of crystallinity and residual stress of the thin films were strongly dependent on the number of shots. X-ray photoelectron spectroscopy showed the Mo 3d3/2, Mo 3d5/2, Mo 3p3/2 and N 1s peaks for all of the thin films, confirming the formation of the γ-Mo2N structure. Scanning electron microscopy images showed the growth of granular structures and then the formation of larger-sized agglomerates on the surfaces of the samples with increasing numbers of shots. Atomic force microscopy indicated that grain sizes on surface layers as well as the average and root mean square roughness increased for samples deposited with more shots. Furthermore, the variations in hardness and electrical resistivity of the deposited MoN thin films were qualitatively explained on the basis of the morphological properties of the samples.

2018 ◽  
Vol 96 (7) ◽  
pp. 804-809 ◽  
Author(s):  
Harun Güney ◽  
Demet İskenderoğlu

The undoped and 1%, 2%, and 3% Cd-doped MgO nanostructures were grown by SILAR method on the soda lime glass substrate. X-ray diffractometer (XRD), ultraviolet–visible spectrometer, scanning electron microscope, photoluminescence (PL), and X-ray photoelectron spectroscopy measurements were taken to investigate Cd doping effects on the structural, optical, and morphological properties of MgO nanostructures. XRD measurements show that the samples have cubic structure and planes of (200), (220) of MgO and (111), (200), and (220) of CdO. It was observed that band gaps increase with rising Cd doping rate in MgO thin film. The surface morphology of samples demonstrates that MgO nanostructures have been affected by the Cd doping. PL measurements show that undoped and Cd-doped MgO thin films can radiate in the visible emission region.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
K. Zakrzewska

This paper treats a problem of nonstoichiometry inTiO2−ythin films deposited by reactive sputtering at controlled sputtering rates. Ion beam techniques, Rutherford backscattering (RBS), and nuclear reaction analysis (NRA) along with X-ray photoelectron spectroscopy have been applied to determine a deviation from stoichiometryyin the bulk and at the surface ofTiO2−ylayers. The critical review of these experimental methods is given. Defect structure responsible for the electrical resistivity of rutileTiO2is discussed.


2003 ◽  
Vol 762 ◽  
Author(s):  
Matthew R. Wills ◽  
Ruth Shinar ◽  
Alan P. Constant

AbstractPulsed laser deposition (PLD) was used to grow microcrystalline thin films of germanium (Ge) and Ge-carbon (Ge,C) alloys on fused quartz and silicon substrates at substrate temperatures 25°C ≤ Ts ≤ 325°C. The films were analyzed structurally with x-ray diffraction (XRD), optically, electrically with four-point probe measurements, and chemically with x-ray photoelectron spectroscopy (XPS). XRD results displayed a varying degree of crystallinity, with the most crystalline films obtained at Ts > 150°C. The resistivity of the Ge films decreased with increasing temperature, displaying a significant decrease for the films deposited at Ts ≥ 230°C. The growth conditions for Ge films served as a starting point for low-temperature deposition of Ge,C alloys with up to 5% C. The effects of Ts and carbon concentration on film properties are discussed.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 202
Author(s):  
Noureddine Hacini ◽  
Mostefa Ghamnia ◽  
Mohamed Amine Dahamni ◽  
Abdelwaheb Boukhachem ◽  
Jean-Jacques Pireaux ◽  
...  

ZnO thin films were synthesized on silicon and glass substrates using the plasma-enhanced chemical vapor deposition (PECVD) technique. Three samples were prepared at substrates temperatures of 200, 300, and 400 °C. The surface chemical composition was analyzed by the use of X-Ray Photoelectron spectroscopy (XPS). Structural and morphological properties were studied by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Optical properties were carried out by UV-visible spectroscopy. XPS spectra showed typical peaks of Zn(2p3/2), Zn(2p1/2), and O(1s) of ZnO with a slight shift attributed to the substrate temperature. XRD analysis revealed hexagonal wurtzite phases with a preferred (002) growth orientation that improved with temperature. Calculation of grain size and dislocation density revealed the crystallization improvement of ZnO when the substrate temperature varied from 200 to 400 °C. SEM images of ZnO films showed textured surfaces composed of grains of spherical shape uniformly distributed. The transmittance yields are reaching 80%, and the values of the band-gap energy indicate that the ZnO films prepared by PECVD present transparent and semiconducting properties.


2009 ◽  
Vol 24 (8) ◽  
pp. 2520-2527 ◽  
Author(s):  
Yonghao Lu ◽  
Junping Wang ◽  
Yaogen Shen ◽  
Dongbai Sun

A series of Ti-B-C-N thin films were deposited on Si (100) at 500 °C by incorporation of different amounts of N into Ti-B-C using reactive unbalanced dc magnetron sputtering in an Ar-N2 gas mixture. The effect of N content on phase configuration, nanostructure evolution, and mechanical behaviors was studied by x-ray diffraction, x-ray photoelectron spectroscopy, Raman spectroscopy, high-resolution transmission electron microscopy, and microindentation. It was found that the pure Ti-B-C was two-phased quasi-amorphous thin films comprising TiCx and TiB2. Incorporation of a small amount of N not only dissolved into TiCx but also promoted growth of TiCx nano-grains. As a result, nanocomposite thin films of nanocrystalline (nc-) TiCx(Ny) (x + y < 1) embedded into amorphous (a-) TiB2 were observed until nitrogen fully filled all carbon vacancy lattice (at that time x + y = 1). Additional increase of N content promoted formation of a-BN at the cost of TiB2, which produced nanocomposite thin films of nc-Ti(Cx,N1-x) embedded into a-(TiB2, BN). Formation of BN also decreased nanocrystalline size. Both microhardness and elastic modulus values were increased with an increase of N content and got their maximums at nanocomposite thin films consisting of nc-Ti(Cx,N1-x) and a-TiB2. Both values were decreased after formation of BN. Residual compressive stress value was successively decreased with an increase of N content. Enhancement of hardness was attributed to formation of nanocomposite structure and solid solution hardening.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 510
Author(s):  
Yongqiang Pan ◽  
Huan Liu ◽  
Zhuoman Wang ◽  
Jinmei Jia ◽  
Jijie Zhao

SiO2 thin films are deposited by radio frequency (RF) plasma-enhanced chemical vapor deposition (PECVD) technique using SiH4 and N2O as precursor gases. The stoichiometry of SiO2 thin films is determined by the X-ray photoelectron spectroscopy (XPS), and the optical constant n and k are obtained by using variable angle spectroscopic ellipsometer (VASE) in the spectral range 380–1600 nm. The refractive index and extinction coefficient of the deposited SiO2 thin films at 500 nm are 1.464 and 0.0069, respectively. The deposition rate of SiO2 thin films is controlled by changing the reaction pressure. The effects of deposition rate, film thickness, and microstructure size on the conformality of SiO2 thin films are studied. The conformality of SiO2 thin films increases from 0.68 to 0.91, with the increase of deposition rate of the SiO2 thin film from 20.84 to 41.92 nm/min. The conformality of SiO2 thin films decreases with the increase of film thickness, and the higher the step height, the smaller the conformality of SiO2 thin films.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1409
Author(s):  
Ofelia Durante ◽  
Cinzia Di Giorgio ◽  
Veronica Granata ◽  
Joshua Neilson ◽  
Rosalba Fittipaldi ◽  
...  

Among all transition metal oxides, titanium dioxide (TiO2) is one of the most intensively investigated materials due to its large range of applications, both in the amorphous and crystalline forms. We have produced amorphous TiO2 thin films by means of room temperature ion-plasma assisted e-beam deposition, and we have heat-treated the samples to study the onset of crystallization. Herein, we have detailed the earliest stage and the evolution of crystallization, as a function of both the annealing temperature, in the range 250–1000 °C, and the TiO2 thickness, varying between 5 and 200 nm. We have explored the structural and morphological properties of the as grown and heat-treated samples with Atomic Force Microscopy, Scanning Electron Microscopy, X-ray Diffractometry, and Raman spectroscopy. We have observed an increasing crystallization onset temperature as the film thickness is reduced, as well as remarkable differences in the crystallization evolution, depending on the film thickness. Moreover, we have shown a strong cross-talking among the complementary techniques used displaying that also surface imaging can provide distinctive information on material crystallization. Finally, we have also explored the phonon lifetime as a function of the TiO2 thickness and annealing temperature, both ultimately affecting the degree of crystallinity.


Author(s):  
Tianlei Ma ◽  
Marek Nikiel ◽  
Andrew G. Thomas ◽  
Mohamed Missous ◽  
David J. Lewis

AbstractIn this report, we prepared transparent and conducting undoped and molybdenum-doped tin oxide (Mo–SnO2) thin films by aerosol-assisted chemical vapour deposition (AACVD). The relationship between the precursor concentration in the feed and in the resulting films was studied by energy-dispersive X-ray spectroscopy, suggesting that the efficiency of doping is quantitative and that this method could potentially impart exquisite control over dopant levels. All SnO2 films were in tetragonal structure as confirmed by powder X-ray diffraction measurements. X-ray photoelectron spectroscopy characterisation indicated for the first time that Mo ions were in mixed valence states of Mo(VI) and Mo(V) on the surface. Incorporation of Mo6+ resulted in the lowest resistivity of $$7.3 \times 10^{{ - 3}} \Omega \,{\text{cm}}$$ 7.3 × 10 - 3 Ω cm , compared to pure SnO2 films with resistivities of $$4.3\left( 0 \right) \times 10^{{ - 2}} \Omega \,{\text{cm}}$$ 4.3 0 × 10 - 2 Ω cm . Meanwhile, a high transmittance of 83% in the visible light range was also acquired. This work presents a comprehensive investigation into impact of Mo doping on SnO2 films synthesised by AACVD for the first time and establishes the potential for scalable deposition of SnO2:Mo thin films in TCO manufacturing. Graphical abstract


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 478
Author(s):  
Wan Mohd Ebtisyam Mustaqim Mohd Daniyal ◽  
Yap Wing Fen ◽  
Silvan Saleviter ◽  
Narong Chanlek ◽  
Hideki Nakajima ◽  
...  

In this study, X-ray photoelectron spectroscopy (XPS) was used to study chitosan–graphene oxide (chitosan–GO) incorporated with 4-(2-pyridylazo)resorcinol (PAR) and cadmium sulfide quantum dot (CdS QD) composite thin films for the potential optical sensing of cobalt ions (Co2+). From the XPS results, it was confirmed that carbon, oxygen, and nitrogen elements existed on the PAR–chitosan–GO thin film, while for CdS QD–chitosan–GO, the existence of carbon, oxygen, cadmium, nitrogen, and sulfur were confirmed. Further deconvolution of each element using the Gaussian–Lorentzian curve fitting program revealed the sub-peak component of each element and hence the corresponding functional group was identified. Next, investigation using surface plasmon resonance (SPR) optical sensor proved that both chitosan–GO-based thin films were able to detect Co2+ as low as 0.01 ppm for both composite thin films, while the PAR had the higher binding affinity. The interaction of the Co2+ with the thin films was characterized again using XPS to confirm the functional group involved during the reaction. The XPS results proved that primary amino in the PAR–chitosan–GO thin film contributed more important role for the reaction with Co2+, as in agreement with the SPR results.


1992 ◽  
Vol 270 ◽  
Author(s):  
Haojie Yuan ◽  
R. Stanley Williams

ABSTRACTThin films of pure germanium-carbon alloys (GexC1−x with x ≈ 0.0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) have been grown on Si(100) and A12O3 (0001) substrates by pulsed laser ablation in a high vacuum chamber. The films were analyzed by x-ray θ-2θ diffraction (XRD), x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), conductivity measurements and optical absorption spectroscopy. The analyses of these new materials showed that films of all compositions were amorphous, free of contamination and uniform in composition. By changing the film composition, the optical band gap of these semiconducting films was varied from 0.00eV to 0.85eV for x = 0.0 to 1.0 respectively. According to the AES results, the carbon atoms in the Ge-C alloy thin film samples has a bonding configuration that is a mixture of sp2 and sp3 hybridizations.


Sign in / Sign up

Export Citation Format

Share Document