scholarly journals Effect of polyunsaturated fatty acid supplementation on milk production – review on health effects and cow milk characteristics

2018 ◽  
Vol 22 (1) ◽  
pp. 9-21
Author(s):  
Paul Joseph Mwau Mwangi ◽  
György Bázár ◽  
Tamás Tóth

The polyunsaturated fatty acids (PUFA) of the n-3 and n-6 group are important in the human body. It is therefore important that these fatty acids are consumed in the right amount and correct proportion so as to maintain a healthy physiological status in the body. Certain foods are naturally rich in these fatty acids, such as sea foods and some oilseeds. Fish and fish oils are rich in eicosapentanoic acid (EPA) and docosahexanoic acid (DHA) which are n-3 fatty acids, they play a crucial role in improving the physiological and health outcomes in conditions such as cardiovascular diseases, cancer, immune suppression and mental health. These fatty acids have also been shown to play beneficial role during pregnancy and lactation. Linolenic acid (LNA) which is abundant in oilseeds such linseed is a precursor of EPA and DHA in the human and therefore can be converted when need be, however the conversion is not very efficient and therefore cannot be used as a substitute. With the current deteriorating state of the global supply of fish and the high demand of energy causing diversion of resources to produce biofuels, the availability of these natural sources of n-3 and n-6 foods is growing ever scarce. Feeding of full-fat linseed and/or linseed oil has been shown to substantially increase the content of LNA in animal products such as meat, eggs and milk. On the other hand, fish oil supplementation in animal feeds also leads to a substantial increase in EPA and DHA to levels that can positive health effects to the public. Due to this potential to increase the amount of n-3 polyunsaturated fatty acids in animal products, it is seen as a simpler and cheaper way to deliver an increase in consumption to the wider public in a sustainable manner. This is due to the fact that products such as milk and eggs are more widely distributed and available in the market. Some challenges are of course present, such as negative effects due to the oxidative stability of polyunsaturated fatty acids which can have negative effects on rumen function and product organoleptic characteristics. To offset the problem of rumen biohydrogenation of PUFA, various methods of protecting the seed and fish oils have been devised, allowing for feeding even higher doses without impacting negatively on production and product quality. Keywords: PUFA, fatty acid profile, cow, organoleptic

Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1627
Author(s):  
Ramesh Kumar Saini ◽  
Parchuri Prasad ◽  
Reddampalli Venkataramareddy Sreedhar ◽  
Kamatham Akhilender Naidu ◽  
Xiaomin Shang ◽  
...  

The omega−3 (n−3) polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic (DHA) acid are well known to protect against numerous metabolic disorders. In view of the alarming increase in the incidence of chronic diseases, consumer interest and demand are rapidly increasing for natural dietary sources of n−3 PUFAs. Among the plant sources, seed oils from chia (Salvia hispanica), flax (Linum usitatissimum), and garden cress (Lepidium sativum) are now widely considered to increase α-linolenic acid (ALA) in the diet. Moreover, seed oil of Echium plantagineum, Buglossoides arvensis, and Ribes sp. are widely explored as a source of stearidonic acid (SDA), a more effective source than is ALA for increasing the EPA and DHA status in the body. Further, the oil from microalgae and thraustochytrids can also directly supply EPA and DHA. Thus, these microbial sources are currently used for the commercial production of vegan EPA and DHA. Considering the nutritional and commercial importance of n−3 PUFAs, this review critically discusses the nutritional aspects of commercially exploited sources of n−3 PUFAs from plants, microalgae, macroalgae, and thraustochytrids. Moreover, we discuss issues related to oxidative stability and bioavailability of n−3 PUFAs and future prospects in these areas.


2021 ◽  
Vol 11 (21) ◽  
pp. 9845
Author(s):  
Alexandra Mihailescu ◽  
Vlad Serafim ◽  
Corina Paul ◽  
Nicoleta Andreescu ◽  
Diana-Andreea Tiugan ◽  
...  

Polyunsaturated fatty acids are involved in a wide variety of biological functions. Linoleic acid and alpha-linolenic acid are two essential fatty acids that the body cannot synthesize. The conversion rates in the body depend on FADS2 genetic variants. Certain variations in this gene are directly responsible for the low levels and poor conversion efficiency of the delta-6 desaturase enzyme, resulting in low circulating levels of docosahexaenoic acid. In this study, we evaluated the impact of the rs526126 FADS2 gene polymorphism on fatty acid levels in a group of two hundred children (n = 95 males, n = 105 females) aged 7–18 years, with obesity defined by BMI > +2 SD. Fatty acid quantification was performed by LC-MS/MS while genotyping for genetic variants was performed using a custom-made hotspot sequencing panel of 55 SNPs. Our results suggest that rs526126 FADS2 gene polymorphism specifically impacts the plasma levels of free n-3 polyunsaturated fatty acids. Finally, the presence of the minor allele G of rs526126 could have beneficial effects, as it was associated with higher levels of free docosahexaenoic acid in plasma, especially in children with low n-3 intakes.


2008 ◽  
Vol 3 (2) ◽  
pp. 89
Author(s):  
Alimuddin Alimuddin ◽  
Goro Yoshizaki ◽  
Toshio Takeuchi ◽  
Odang Carman

Eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) have important nutritional benefits in humans. EPA and DHA are mainly derived from fish, but the decline in the stocks of major marine capture fishes could result in these fatty acids being consumed less. Farmed fish could serve as promising sources of EPA and DHA, but they need these fatty acids in their diets. Generation of fish strains that are capable of synthesizing enough amounts of EPA/DHA from the conversion of α-linolenic acid (LNA, 18:3n-3) rich oils can supply a new EPA/DHA source. This may be achieved by over-expression of genes encoding enzymes involved in HUFA biosynthesis. In aquaculture, the successful of this technique would open the possibility to reduce the enrichment of live food with fish oils for marine fish larvae, and to completely substitute fish oils with plant oils without reducing the quality of flesh in terms of EPA and DHA contents. Here, three genes, i.e. Δ6-desaturase-like (OmΔ6FAD), Δ5-desaturase-like (OmΔ5FAD) and elongase-like (MELO) encoding EPA/DHA metabolic enzymes derived from masu salmon (Oncorhynchus masou) were individually transferred into zebrafish (Danio rerio) as a model to increase its ability for synthesizing EPA and DHA. Fatty acid analysis showed that EPA content in whole body of the second transgenic fish generation over-expressing OmΔ6FAD gene was 1.4 fold and that of DHA was 2.1 fold higher (P<0.05) than those in non-transgenic fish. The EPA content in whole body of transgenic fish over-expressing OmΔ5FAD gene was 1.21-fold, and that of DHA was 1.24-fold higher (P<0.05) than those in nontransgenic fish. The same patterns were obtained in transgenic fish over-expressing MELO gene. EPA content was increased by 1.30-fold and DHA content by 1.33-fold higher (P<0.05) than those in non-transgenic fish. The results of studies demonstrated that fatty acid content of fish can be enhanced by over-expressing gene encoding enzymes involved in fatty acid biosynthesis, and perhaps this could be applied to tailor farmed fish as even better sources of valuable human food.


2020 ◽  
Vol 16 (2) ◽  
pp. 213-219
Author(s):  
Arjina Parbin Sarkar ◽  
Sanjay Basumatary ◽  
Santanu Sarma ◽  
Sandeep Das

Background: Fishes are good sources of the fatty acids such as ω-3 and ω-6 polyunsaturated fatty acids, and fat-soluble vitamins for human consumption which play vital roles for various biological processes in the body and help in the proper growth and prevention of diseases. Objective: The objective of the present study was to determine the fatty acid composition, cholesterols, triglyceride and vitamin contents of some selected fishes from Hel river, Assam, India. Methods: Fatty acid composition of fish species was examined using gas chromatography-mass spectrometry, lipid components were determined following the reported methods and vitamins A and D contents were investigated by reversed-phase high-performance liquid chromatography. Results: Fatty acid compositions varied from 51.20-89.47% of saturated fatty acids, 0.27-19.68% of monounsaturated fatty acids and 1.75-30.76% of polyunsaturated fatty acids. Eicosapentaenoic acid and docosahexaenoic acid ranged from 0.54-22.30% and 1.26-18.85%, respectively. The fish species showed varying amounts of lipid components. The vitamins A and D were found in the range of 15.85-1287.0 μg/100 g and 45.0-677.24 μg/100 g, respectively. Conclusion: The fish species of this study are found rich in ω-3 polyunsaturated fatty acids such as eicosapentaenoic acid and docosahexaenoic acid along with noticeable amounts of vitamins A and D. Hence, these fish species have the potentials to serve as the natural dietary supplements for ω-3 fatty acids and other nutrients.


1996 ◽  
Vol 315 (1) ◽  
pp. 329-333 ◽  
Author(s):  
Danielle MARTIN ◽  
Kelly A. MECKLING-GILL

Here we show that in vitro supplementation of L1210 murine lymphoblastic leukaemia cells with n-3 polyunsaturated fatty acids results in considerable changes in the fatty acid composition of membrane phospholipids. Incubations for 48 h with 30 μM eicosapentaenoic acid (20:5, n-3; EPA) or docosahexaenoic acid (22:6, n-3; DHA) results primarily in substitution of long-chain n-6 fatty acids with long-chain n-3 fatty acids. This results in a decrease in the n-6/n-3 ratio from 6.9 in unsupplemented cultures to 1.2 or 1.6 for EPA and DHA supplemented cultures, respectively. Coincident with these changes in membrane fatty acid composition, we observed a 5-fold increase in the rate of adenosine (5 μM) uptake via the nitrobenzylthioinosine (NBMPR)-sensitive nucleoside transporter in EPA- and DHA- supplemented L1210 cells, relative to unsupplemented cells. This seemed to result from a decrease in the Km for adenosine from 12.5 μM in unsupplemented cultures to 5.1 μM in DHA-treated cultures. Guanosine (50 μM) transport was similarly affected by DHA with a 3.5-fold increase in the initial rate of uptake. In contrast, pyrimidine transport, as measured by uptake of thymidine and cytidine, was not similarly affected, suggesting that substrate recognition had been altered by fatty acid supplementation. Studies using [3H]NBMPR showed that there was no effect of EPA or DHA on either the number of NBMPR-binding sites or the affinity of these sites for NBMPR. This observation suggests that the increases in adenosine and guanosine transport were not due to increases in the number of transporter sites but rather that EPA and DHA directly or indirectly modulate transporter function.


2021 ◽  
pp. 48-54
Author(s):  
L. S. Starostina

Under current conditions of life with its intense rhythm, launch of new technologies, lack of time, both physical and mental workloads on a person increase. In these days, doctors more often report patients’ complaints of undue tiredness: they don’t feel rested even after a holiday and/or sleep. Today we tend to detect such manifestations not only in adults. Children also become less stress-resistant, more irritable due to an overabundance of information, and are prone to frequent infections. How can we help the growing generation cope with the increasing workloads? There’s no question, everyone knows about the need to use vitamins, but the right choice is not always possible. There are currently many single-component vitamin supplements and vitamin-mineral complexes. Some people prefer not to use industrially produced vitamins, but those contained in the natural products - fruits, vegetables, berries. But unfortunately, such a diet does not include the group of fat-soluble vitamins - A, D, E, K. In addition, far from everyone understands the importance of eating fatty acids. This article is devoted to the feasibility of additional intake of fat-soluble vitamins, polyunsaturated fatty acids (omega-3), their role in the body and deficiency symptoms. It has been established that the polyunsaturated fatty acid deficiency in the early period of life may trigger the development of cardiovascular disorders, problems associated with high cholesterol content, visual impairment, a drop of immunity, learning difficulties, and nervous system disorders in children in later years. Particular attention is paid to the omega-3 polyunsaturated fatty acid supplement combined with vitamins (A, E, D3), which enhance the positive effects. In addition, it does not cause negative emotions since it has a fruity taste.


Author(s):  
Poulopoulou Ioanna ◽  
Zoidis Evangelos ◽  
Avramidou Styliani ◽  
Massouras Theofilaktos ◽  
Hadjigeorgiou Ioannis

The presence of lipids in animal products have attracted scientific and consumers’ attention due to the health beneficial effects of mono- (MUFA) and polyunsaturated fatty acids (PUFA). Various factors may affect their concentration, while plant components, such as terpenes, can possibly modify their concentration in milk, as well as other milk characteristics. The aim of the present study was to test the effects of a mixture of three terpenes, α-pinene, limonene and β-caryophyllene that was orally administered to ewes, on milk fatty acids profile and coagulation properties. Eight ewes were divided in two groups, control (C) and treatment (T), where the T-group received orally a mixture of the three aforementioned terpenes. Rate of firming (K20) was longer for the T-group, while other coagulation parameters were not affected. The concentration of C14:1 and C16:0 decreased significantly, while C18:0, C18:1, C18:3 increased significantly in T-group. The concentration of MUFA and PUFA increased significantly, while SFA decreased in the T-group of ewes. In conclusion, the results of the present study indicate that terpene intake could affect the proportion of FA and coagulation properties of ewes’ milk.


2020 ◽  
Author(s):  
Christopher Beermann ◽  
Daniela Fussbroich ◽  
Ralf Schubert

Abstract BackgroundLong-chain polyunsaturated fatty acids (LCPUFA) are discussed to resolve chronic inflammation in asthma and other lung diseases. This study aimed at accelerating the incorporation kinetic of orally applied LCPUFA into lung tissue by co-applying medium-chain fatty acids (MCFA) which enhance the fat-metabolic rate.MethodsFemale C57BL/6 mice were orally supplemented with 700 mg eicosapentaenoic acid (EPA, C20:5n3) (group size: n=16) or additionally with 300 mg coconut oil with 4.2 wt% MCFA of total fat per kg body weight per day (group size: n=16) for 28 days. The fatty acid profile alterations of lung tissues were monitored by fatty acid methylester-analysis with capillary gaschromatography-flame-ionization detection over 63 days.ResultsThe combined administration of EPA with MCFA increased its incorporation into the lung tissue up to day 28 (EPA 1.28 wt% ± 0,18; EPA and MCFA 1.83 wt% ± 0.17; Δ 0.55; p< 0.001 at day 28). But also its removal thereon was boosted compared to EPA supplementation alone (EPA 0.81 wt% ± 0.08; EPA and MCFA 0.58 wt% ± 0.06; Δ 0.23; p< 0.001 at day 31).ConclusionBased on the illustrated accelerating effects of MCFA on the incorporation and removal kinetics of dietary LCPUFA into lung tissue, the present study suggests a two-phase strategy for immune-regulative dietary LCPUFA-supplementation. At the very beginning supplementations should be accompanied with MCFA to support the LCPUFA-uptake, thereon MCFA should be omitted to stabilize the LCPUFA-status in the body.


2021 ◽  
Vol 10 (16) ◽  
pp. e338101623706
Author(s):  
Flávia Santina Pelissari Quinalha ◽  
Luciana Pelissari Manin ◽  
Marina Masetto Antunes ◽  
Guilherme Godoy ◽  
Marília Bellanda Galuch ◽  
...  

Omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) play an important role in human health. Fish oils enriched with EPA and DHA have commercialized in triacylglycerol (TAG) and ethyl ester forms (EE). In this study, we compared the impact of diets containing fish oil in ethyl ester and triacylglycerol forms as a lipid source in five different tissues as liver, skeleteral muscle, brain, and epididymal white adipose tissue (WAT). The DHA levels were higher in the WAT and skeletal muscle of TAG and EE groups in comparison with the SB group. The body weight and brain, liver, epididymal WAT, and gastrocnemius muscle weights, and serum glucose, TG, cholesterol were not different between the groups. Thus, we conclude that EPA and DHA in the form of EE or TAG influence the fatty acids composition of different tissues.


Sign in / Sign up

Export Citation Format

Share Document