scholarly journals Моделювання якісного складу паливно-повітряної суміші у факельному запальнику камер згоряння ГТД

2021 ◽  
pp. 39-47
Author(s):  
Юрій Іванович Торба ◽  
Дмитро Вікторович Павленко ◽  
Віталій Вікторович Манжос

The qualitative composition of the fuel-air mixture, which is formed in the torch igniter of the combustion chamber of the gas turbine engine (GTE), determines the efficiency and reliability of their work. The main task of the study is to determine the qualitative composition of the fuel-air mixture near the electric spark plug of the GTE torch igniter depending on its geometric features and engine operation condition. The composition of the mixture was evaluated using analytical, experimental, and numerical methods. According to the analytical model, a significant over-enrichment of the fuel-air mixture in the igniter housing was established and confirmed experimentally. A numerical model was used to determine the fields of mass concentration of fuel particles in the fuel-air mixture in the torch igniter housing, considering the peculiarities of airflow and fuel supply for different combinations of GTE design features and operating conditions. The influence of geometric parameters of the housing and external factors was investigated using the numerical model of stationary combustion of fuel-air mixture, which was prepared in the torch igniter housing of GTE combustion chamber by evaporation and spraying of aviation kerosene particles in the air stream. The implementation of a small-factor experiment allowed to establish the degree of influence of each factor under study and their interaction on the excess air coefficient. The correlation coefficient between the coefficient of excess air near the spark plug and the average flame temperature is set. Given the absence of serial designs of controller torch ignites, it is proposed to use a pulsed fuel supply to control the quality of the fuel-air mixture. Further ways of research to increase the reliability of ignition of both the torch igniter from the electric spark plug and the combustion chamber of GTE from the flame is outlined.

Author(s):  
Luca Casarsa ◽  
Pietro Giannattasio ◽  
Diego Micheli

A simple and efficient numerical model is presented for the simulation of pulse combustors. It is based on the numerical solution of the quasi-1D unsteady flow equations and on phenomenological sub-models of turbulence and combustion. The gas dynamics equations are solved by using the Flux Difference Splitting (FDS) technique, a finite-volume upwind numerical scheme, and ENO reconstructions to obtain second-order accurate non-oscillatory solutions. The numerical fluxes computed at the cell interfaces are used to transport also the reacting species, their formation energy and the turbulent kinetic energy. The combustion progress in each cell is evaluated explicitly at the end of each time step according to a second-order overall reaction kinetics. In this way, the computations of gas dynamic evolution and heat release are decoupled, which makes the model particularly simple and efficient. A comprehensive set of measurements has been performed on a small Helmholtz type pulse-jet in order to validate the model. Air and fuel consumptions, wall temperatures, pressure cycles in both combustion chamber and tail-pipe, and instantaneous thrust have been recorded in different operating conditions of the device. The comparison between numerical and experimental results turns out to be satisfactory in all the working conditions of the pulse-jet. In particular, accurate predictions are obtained of the device operating frequency and of shape, amplitude and phase of the pressure waves in both combustion chamber and tail-pipe.


Author(s):  
Mirko Baratta ◽  
Andrea E. Catania ◽  
Francesco C. Pesce

Direct injection (DI) of compressed natural gas (CNG) under high pressure conditions is a topic of great interest, owing to its potential for improving SI engine performance and fuel consumption. However, relevant technical difficulties have yet to be resolved in order to stabilize combustion process, especially for stratified engine operating conditions. The present paper is focused on experimental and numerical investigations of the jet formation and fuel-air mixing process in a research optical-access single-cylinder engine. The engine is based on the multi-cylinder engine under development within the European Community (EC) VII Framework Program (FP) InGAS Integrated Project, and features a centrally mounted poppet-valve injector on a pent-roof combustion chamber with a bowl in piston. Experimental investigations were made by means of the planar laser-induced fluorescence technique, and revealed a cycle-to-cycle jet shape variability. In particular, for specific cylinder pressure values at the start of injection, the jet can adhere to chamber walls for a relevant number of cycles, leading to an ‘umbrella-like’ shape. This can change the mixing capabilities of the combustion chamber and cause instabilities in the combustion process. The mentioned behaviour is strongly dependent not only on the injection and cylinder pressures, but also on important design parameters, such as needle cone angle and in-chamber injector protrusion. For this reason, in order to obtain a deep insight into the injected gas behaviour on an average cycle basis, the experimental investigation was supported by a numerical analysis. Simulations were carried out by an optimized variable-density finite-volume numerical model which was built within the Star-CD environment. A previously developed and validated ‘virtual injector’ model was implemented. The outcomes of the numerical model were compared to laser-induced fluorescence images, for both stratified- and homogeneous-charge engine operating conditions and a good agreement was obtained, substantiating the reliability of the applied computational model. Then, the effects of the injector protrusion in the combustion chamber and of injection timing were analyzed, and their impact on jet stability and mixture-formation process was analyzed.


2000 ◽  
Vol 123 (1) ◽  
pp. 204-210 ◽  
Author(s):  
J. T. Lee ◽  
Y. Y. Kim ◽  
C. W. Lee ◽  
J. A. Caton

To understand the occurrence of backfire in hydrogen fueled engines using an external (inducted) fuel supply, a fundamental study was completed using a modified experimental engine. A relation was found between the crevice volume in the combustion chamber and the occurrence of backfire. The results showed that the crevice around the spark plug electrode was not a major cause of backfire, but the combustion state of the mixture in the piston top land crevice, second land, and ring groove did have a direct affect on backfire occurrence. By increasing the top land crevice volume and the amount of blow-by gas, the equivalence ratio before backfire occurred was extended.


Author(s):  
Abdallah Ahmed ◽  
Essam E. Khalil ◽  
Hatem Kayed ◽  
Mohamed M. A. Hassan

NOx formation during the combustion process occurs mainly through the oxidation of nitrogen in the combustion air (thermal NOx) and through oxidation of nitrogen with the fuel (prompt NOx). The present study aims to investigate numerically the problem of NOx pollution using a model of combustion chamber with 200 kW swirl burner utilizing propane as fuel. The importance of this problem is mainly due to its relation to the pollutants produced by boiler furnaces and gas turbines, which used widely in thermal industrial plants. Governing conservation equations of mass, momentum and energy, and equations representing the transport of species concentrations, turbulence, combustion and radiation modeling in addition to NOx modeling equations were solved together to present temperature and OH distribution inside the combustion chamber, and the NOx concentration at the combustion chamber exit, at various operating conditions of fuel to air ratio. In particular, the simulation provided more insight on the correlation between the peak flame temperature and the thermal NOx concentration. The results have shown that the peak flame temperature and NOx concentration decrease as the excess air factor λ increases. When considering a fixed value of mass flow rate of fuel, the results show that increasing λ results in a maximum value of thermal NOx concentration at the exit of the combustion chamber at λ = 1.05. As the combustion air temperature increases, and the thermal NOx concentration increases sharply. However, when λ exceeds this value NOx concentration starts to decrease due to the combustion air temperature decrease.


Author(s):  
A. P. Shaikin ◽  
I. R. Galiev

The article analyzes the influence of chemical composition of hythane (a mixture of natural gas with hydrogen) on pressure in an engine combustion chamber. A review of the literature has showed the relevance of using hythane in transport energy industry, and also revealed a number of scientific papers devoted to studying the effect of hythane on environmental and traction-dynamic characteristics of the engine. We have studied a single-cylinder spark-ignited internal combustion engine. In the experiments, the varying factors are: engine speed (600 and 900 min-1), excess air ratio and hydrogen concentration in natural gas which are 29, 47 and 58% (volume).The article shows that at idling engine speed maximum pressure in combustion chamber depends on excess air ratio and proportion hydrogen in the air-fuel mixture – the poorer air-fuel mixture and greater addition of hydrogen is, the more intense pressure increases. The positive effect of hydrogen on pressure is explained by the fact that addition of hydrogen contributes to increase in heat of combustion fuel and rate propagation of the flame. As a result, during combustion, more heat is released, and the fuel itself burns in a smaller volume. Thus, the addition of hydrogen can ensure stable combustion of a lean air-fuel mixture without loss of engine power. Moreover, the article shows that, despite the change in engine speed, addition of hydrogen, excess air ratio, type of fuel (natural gas and gasoline), there is a power-law dependence of the maximum pressure in engine cylinder on combustion chamber volume. Processing and analysis of the results of the foreign and domestic researchers have showed that patterns we discovered are applicable to engines of different designs, operating at different speeds and using different hydrocarbon fuels. The results research presented allow us to reduce the time and material costs when creating new power plants using hythane and meeting modern requirements for power, economy and toxicity.


2020 ◽  
Vol 04 ◽  
Author(s):  
Guohai Jia ◽  
Lijun Li ◽  
Li Dai ◽  
Zicheng Gao ◽  
Jiping Li

Background: A biomass pellet rotary burner was chosen as the research object in order to study the influence of excess air coefficient on the combustion efficiency. The finite element simulation model of biomass rotary burner was established. Methods: The computational fluid dynamics software was applied to simulate the combustion characteristics of biomass rotary burner in steady condition and the effects of excess air ratio on pressure field, velocity field and temperature field was analyzed. Results: The results show that the flow velocity inside the burner gradually increases with the increase of inlet velocity and the maximum combustion temperature is also appeared in the middle part of the combustion chamber. Conclusion: When the excess air coefficient is 1.0 with the secondary air outlet velocity of 4.16 m/s, the maximum temperature of the rotary combustion chamber is 2730K with the secondary air outlet velocity of 6.66 m/s. When the excess air ratio is 1.6, the maximum temperature of the rotary combustion chamber is 2410K. When the air ratio is 2.4, the maximum temperature of the rotary combustion chamber is 2340K with the secondary air outlet velocity of 9.99 m/s. The best excess air coefficient is 1.0. The experimental value of combustion temperature of biomass rotary burner is in good agreement with the simulation results.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4136
Author(s):  
Clemens Gößnitzer ◽  
Shawn Givler

Cycle-to-cycle variations (CCV) in spark-ignited (SI) engines impose performance limitations and in the extreme limit can lead to very strong, potentially damaging cycles. Thus, CCV force sub-optimal engine operating conditions. A deeper understanding of CCV is key to enabling control strategies, improving engine design and reducing the negative impact of CCV on engine operation. This paper presents a new simulation strategy which allows investigation of the impact of individual physical quantities (e.g., flow field or turbulence quantities) on CCV separately. As a first step, multi-cycle unsteady Reynolds-averaged Navier–Stokes (uRANS) computational fluid dynamics (CFD) simulations of a spark-ignited natural gas engine are performed. For each cycle, simulation results just prior to each spark timing are taken. Next, simulation results from different cycles are combined: one quantity, e.g., the flow field, is extracted from a snapshot of one given cycle, and all other quantities are taken from a snapshot from a different cycle. Such a combination yields a new snapshot. With the combined snapshot, the simulation is continued until the end of combustion. The results obtained with combined snapshots show that the velocity field seems to have the highest impact on CCV. Turbulence intensity, quantified by the turbulent kinetic energy and turbulent kinetic energy dissipation rate, has a similar value for all snapshots. Thus, their impact on CCV is small compared to the flow field. This novel methodology is very flexible and allows investigation of the sources of CCV which have been difficult to investigate in the past.


2021 ◽  
pp. 146808742110050
Author(s):  
Stefania Esposito ◽  
Lutz Diekhoff ◽  
Stefan Pischinger

With the further tightening of emission regulations and the introduction of real driving emission tests (RDE), the simulative prediction of emissions is becoming increasingly important for the development of future low-emission internal combustion engines. In this context, gas-exchange simulation can be used as a powerful tool for the evaluation of new design concepts. However, the simplified description of the combustion chamber can make the prediction of complex in-cylinder phenomena like emission formation quite challenging. The present work focuses on the prediction of gaseous pollutants from a spark-ignition (SI) direct injection (DI) engine with 1D–0D gas-exchange simulations. The accuracy of the simulative prediction regarding gaseous pollutant emissions is assessed based on the comparison with measurement data obtained with a research single cylinder engine (SCE). Multiple variations of engine operating parameters – for example, load, speed, air-to-fuel ratio, valve timing – are taken into account to verify the predictivity of the simulation toward changing engine operating conditions. Regarding the unburned hydrocarbon (HC) emissions, phenomenological models are used to estimate the contribution of the piston top-land crevice as well as flame wall-quenching and oil-film fuel adsorption-desorption mechanisms. Regarding CO and NO emissions, multiple approaches to describe the burned zone kinetics in combination with a two-zone 0D combustion chamber model are evaluated. In particular, calculations with reduced reaction kinetics are compared with simplified kinetic descriptions. At engine warm operation, the HC models show an accuracy mainly within 20%. The predictions for the NO emissions follow the trend of the measurements with changing engine operating parameters and all modeled results are mainly within ±20%. Regarding CO emissions, the simplified kinetic models are not capable to predict CO at stoichiometric conditions with errors below 30%. With the usage of a reduced kinetic mechanism, a better prediction capability of CO at stoichiometric air-to-fuel ratio could be achieved.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Jinlong Liu ◽  
Hemanth Kumar Bommisetty ◽  
Cosmin Emil Dumitrescu

Heavy-duty compression-ignition (CI) engines converted to natural gas (NG) operation can reduce the dependence on petroleum-based fuels and curtail greenhouse gas emissions. Such an engine was converted to premixed NG spark-ignition (SI) operation through the addition of a gas injector in the intake manifold and of a spark plug in place of the diesel injector. Engine performance and combustion characteristics were investigated at several lean-burn operating conditions that changed fuel composition, spark timing, equivalence ratio, and engine speed. While the engine operation was stable, the reentrant bowl-in-piston (a characteristic of a CI engine) influenced the combustion event such as producing a significant late combustion, particularly for advanced spark timing. This was due to an important fraction of the fuel burning late in the squish region, which affected the end of combustion, the combustion duration, and the cycle-to-cycle variation. However, the lower cycle-to-cycle variation, stable combustion event, and the lack of knocking suggest a successful conversion of conventional diesel engines to NG SI operation using the approach described here.


Author(s):  
Daniel Lörstad ◽  
Annika Lindholm ◽  
Jan Pettersson ◽  
Mats Björkman ◽  
Ingvar Hultmark

Siemens Oil & Gas introduced an enhanced SGT-800 gas turbine during 2010. The new power rating is 50.5MW at a 38.3% electrical efficiency in simple cycle (ISO) and best in class combined-cycle performance of more than 55%, for improved fuel flexibility at low emissions. The updated components in the gas turbine are interchangeable from the existing 47MW rating. The increased power and improved efficiency are mainly obtained by improved compressor airfoil profiles and improved turbine aerodynamics and cooling air layout. The current paper is focused on the design modifications of the combustor parts and the combustion validation and operation experience. The serial cooling system of the annular combustion chamber is improved using aerodynamically shaped liner cooling air inlet and reduced liner rib height to minimize the pressure drop and optimize the cooling layout to improve the life due to engine operation hours. The cold parts of the combustion chamber were redesigned using cast cooling struts where the variable thickness was optimized to maximize the cycle life. Due to fewer thicker vanes of the turbine stage #1, the combustor-turbine interface is accordingly updated to maintain the life requirements due to the upstream effect of the stronger pressure gradient. Minor burner tuning is used which in combination with the previously introduced combustor passive damping results in low emissions for >50% load, which is insensitive to ambient conditions. The combustion system has shown excellent combustion stability properties, such as to rapid load changes and large flame temperature range at high loads, which leads to the possibility of single digit Dry Low Emission (DLE) NOx. The combustion system has also shown insensitivity to fuels of large content of hydrogen, different hydrocarbons, inerts and CO. Also DLE liquid operation shows low emissions for 50–100% load. The first SGT-800 with 50.5MW rating was successfully tested during the Spring 2010 and the expected performance figures were confirmed. The fleet leader has, up to January 2013, accumulated >16000 Equivalent Operation Hours (EOH) and a planned follow up inspection made after 10000 EOH by boroscope of the hot section showed that the combustor was in good condition. This paper presents some details of the design work carried out during the development of the combustor design enhancement and the combustion operation experience from the first units.


Sign in / Sign up

Export Citation Format

Share Document