scholarly journals Growth intensity and antibacterial properties of Enterococcus faecium and Enterococcus durans strains isolated from traditional Carpathian brynza

Author(s):  
I. I. Kuchnir ◽  
O. Y. Tsisaryk ◽  
I. M. Slyvka ◽  
L. Y. Musiy ◽  
I. M. Kuchnir ◽  
...  

The article presents the results of the study the ability of four not studied strains of enterococci (E. durans, SB6, E. faecium SB12, E. durans SB18, E. durans SB20), which were isolated from the Carpathian brynza, to reduce the acidity of medium of cultivation, the rate of biomass accumulation and the ability to exhibit antagonistic properties to the opportunistic microflora. Lactic acid and minor compounds are producing in a result of lactose fermentation, which form the specific taste and aroma properties of the product. The activity of acid formation has crucial because it directly connected with the coagulation of proteins and the prevention of the growing of extraneous microflora. Therefore, the rate of acidity increasing of the medium is one of the most important characteristics in selection of strains of lactic acid bacteria for the manufacture of dairy products. High growth rate, resistance to the contamination of extraneous microflora and preservation of their properties in the finished product are the technological properties of the strains. The inhibition of the growth of pathogenic cultures of microorganisms is the main probiotic functions of beneficial bacteria namely antagonistic activity. It was found, that the strain E. durans SB20 manifested the highest ability to increase the acidity of the medium under the cultivation for 24 hours at 37 °C as it reduced the pH on 30.3 %, and the strain E. durans SB18 increased the acidity on 29.9 %. Under 48 hours strains E. durans SB20 and SB18 increased the acidity on 31.1 and 30.5 % (P< 0.001) respectively compared with the control. The growth rate of stains E. durans SB20 and E. durans SB18 were in 18,0 and 17,6 times higher than in control under the cultivation for 24 hours at 37 °C, the optical density were in 18.3 and 18.2 times higher respectively than in the control sample under the cultivation for 48 hours at the same temperature. Furthermore, strains of enterococci showed antagonistic properties against conditionally pathogenic cultures of microorganisms on 24 and 48 hour of cultivation. In addition, it was found that with an increasing temperature of the antagonistic activity of the strains cultivation increased. Obviously, it was connected that more biologically active substances and microbial secondary metabolites are formed under the longer cultivation and higher temperatures. In particular on 48 hours at 37 °C almost of all the tested strains showed moderate antagonistic activity against E. coli, S. enteritidis, E. aerogenes, P. mirabilis and P. aeruginosa. However, all four strains didn`t have antagonistic activity against the test-strain S. aureus.

2013 ◽  
Vol 740-742 ◽  
pp. 323-326
Author(s):  
Kassem Alassaad ◽  
François Cauwet ◽  
Davy Carole ◽  
Véronique Soulière ◽  
Gabriel Ferro

Abstract. In this paper, conditions for obtaining high growth rate during epitaxial growth of SiC by vapor-liquid-solid mechanism are investigated. The alloys studied were Ge-Si, Al-Si and Al-Ge-Si with various compositions. Temperature was varied between 1100 and 1300°C and the carbon precursor was either propane or methane. The variation of layers thickness was studied at low and high precursor partial pressure. It was found that growth rates obtained with both methane and propane are rather similar at low precursor partial pressures. However, when using Ge based melts, the use of high propane flux leads to the formation of a SiC crust on top of the liquid, which limits the growth by VLS. But when methane is used, even at extremely high flux (up to 100 sccm), no crust could be detected on top of the liquid while the deposit thickness was still rather small (between 1.12 μm and 1.30 μm). When using Al-Si alloys, no crust was also observed under 100 sccm methane but the thickness was as high as 11.5 µm after 30 min growth. It is proposed that the upper limitation of VLS growth rate depends mainly on C solubility of the liquid phase.


2008 ◽  
Vol 600-603 ◽  
pp. 115-118 ◽  
Author(s):  
Henrik Pedersen ◽  
Stefano Leone ◽  
Anne Henry ◽  
Franziska Christine Beyer ◽  
Vanya Darakchieva ◽  
...  

The chlorinated precursor methyltrichlorosilane (MTS), CH3SiCl3, has been used to grow epitaxial layers of 4H-SiC in a hot wall CVD reactor, with growth rates as high as 170 µm/h at 1600°C. Since MTS contains both silicon and carbon, with the C/Si ratio 1, MTS was used both as single precursor and mixed with silane or ethylene to study the effect of the C/Si and Cl/Si ratios on growth rate and doping of the epitaxial layers. When using only MTS as precursor, the growth rate showed a linear dependence on the MTS molar fraction in the reactor up to about 100 µm/h. The growth rate dropped for C/Si < 1 but was constant for C/Si > 1. Further, the growth rate decreased with lower Cl/Si ratio.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sae Katsuro ◽  
Weifang Lu ◽  
Kazuma Ito ◽  
Nanami Nakayama ◽  
Naoki Sone ◽  
...  

Abstract Improving current injection into r- and m-planes of nanowires (NWs) is essential to realizing efficient GaInN/GaN multiple quantum shell (MQS) NW-based light-emitting diodes (LEDs). Here, we present the effects of different p-GaN shell growth conditions on the emission characteristics of MQS NW-LEDs. Firstly, a comparison between cathodoluminescence (CL) and electroluminescence (EL) spectra indicates that the emission in NW-LEDs originates from the top region of the NWs. By growing thick p-GaN shells, the variable emission peak at around 600 nm and degradation of the light output of the NW-LEDs are elaborated, which is attributable to the localization of current in the c-plane region with various In-rich clusters and deep-level defects. Utilizing a high growth rate of p-GaN shell, an increased r-plane and a reduced c-plane region promote the deposition of indium tin oxide layer over the entire NW. Therefore, the current is effectively injected into both the r- and m-planes of the NW structures. Consequently, the light output and EL peak intensity of the NW-LEDs are enhanced by factors of 4.3 and 13.8, respectively, under an injection current of 100 mA. Furthermore, scanning transmission electron microscope images demonstrate the suppression of dislocations, triangular defects, and stacking faults at the apex of the p-GaN shell with a high growth rate. Therefore, localization of current injection in nonradiative recombination centers near the c-plane was also inhibited. Our results emphasize the possibility of realizing high efficacy in NW-LEDs via optimal p-GaN shell growth conditions, which is quite promising for application in the long-wavelength region.


2019 ◽  
Vol 45 (3) ◽  
pp. 3811-3815 ◽  
Author(s):  
Jin-Geun Yu ◽  
Byung Chan Yang ◽  
Jeong Woo Shin ◽  
Sungje Lee ◽  
Seongkook Oh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document