scholarly journals DETERMINATION AND MODELING OF THE LIQUIDUS SURFACE, VAPOR PRESSURE AND IMMISCIBILITY BOUNDARIES IN THE Cu–Pb–S SYSTEM

2021 ◽  
Vol 0 (4) ◽  
pp. 35-42
Author(s):  
N.B. Babanly ◽  
◽  
M.V. Bulanova ◽  
A.N. Mustafaeva ◽  
A.N. Mammadov ◽  
...  

For the first time using a membrane zero-manometer, the vapor pressure S2 over the surface of the PbS liquidus in the ternary system Cu–Pb–S were determined in the range 1100÷1400 K and 0÷760 mm Hg. Based on the thermodynamic calculation, the boundaries of the immiscibility of liquid alloys of the Cu–S, Pb–S, and Cu–Pb–S systems were determined and analytically described. Critical temperatures and pressures for immiscibility regions of sulfur-rich liquid alloys are characterized by high values: Tcr= 1520÷1880 K; Pcr=170÷510 atm. The crystallization surfaces of lead sulfide with electronic conductivity (p-type PbS) and with hole conductivity (n-type PbS) are calculated and analytically de-scribed, as well as the corresponding values of sulfur vapor pressure over the crystallization surface of lead sulfide. All analytical dependencies for 3D modeling were obtained and visualized using the OriginLab computer program

2008 ◽  
Vol 600-603 ◽  
pp. 1187-1190 ◽  
Author(s):  
Q. Jon Zhang ◽  
Charlotte Jonas ◽  
Joseph J. Sumakeris ◽  
Anant K. Agarwal ◽  
John W. Palmour

DC characteristics of 4H-SiC p-channel IGBTs capable of blocking -12 kV and conducting -0.4 A (-100 A/cm2) at a forward voltage of -5.2 V at 25°C are demonstrated for the first time. A record low differential on-resistance of 14 mW×cm2 was achieved with a gate bias of -20 V indicating a strong conductivity modulation in the p-type drift region. A moderately doped current enhancement layer grown on the lightly doped drift layer effectively reduces the JFET resistance while maintains a high carrier lifetime for conductivity modulation. A hole MOS channel mobility of 12.5 cm2/V-s at -20 V of gate bias was measured with a MOS threshold voltage of -5.8 V. The blocking voltage of -12 kV was achieved by Junction Termination Extension (JTE).


1996 ◽  
Vol 450 ◽  
Author(s):  
C. A. Wang ◽  
G. W. Turner ◽  
M. J. Manfra ◽  
H. K. Choi ◽  
D. L. Spears

ABSTRACTGai1−xInxASySb1-y (0.06 < x < 0.18, 0.05 < y < 0.14) epilayers were grown lattice-matched to GaSb substrates by low-pressure organometallic vapor phase epitaxy (OMVPE) using triethylgallium, trimethylindium, tertiarybutylarsine, and trimethylantimony. These epilayers have a mirror-like surface morphology, and exhibit room temperature photoluminescence (PL) with peak emission wavelengths (λP,300K) out to 2.4 μm. 4K PL spectra have a full width at half-maximum of 11 meV or less for λP,4K < 2.1 μm (λP,300K = 2.3 μm). Nominally undoped layers are p-type with typical 300K hole concentration of 9 × 1015 cm−3 and mobility ∼ 450 to 580 cm2/V-s for layers grown at 575°C. Doping studies are reported for the first time for GalnAsSb layers doped n type with diethyltellurium and p type with dimethylzinc. Test diodes of p-GalnAsSb/n-GaSb have an ideality factor that ranges from 1.1 to 1.3. A comparison of electrical, optical, and structural properties of epilayers grown by molecular beam epitaxy indicates OMVPE-grown layers are of comparable quality.


2017 ◽  
Vol 5 (37) ◽  
pp. 19991-19996 ◽  
Author(s):  
Xuecheng Cao ◽  
Zhihui Sun ◽  
Xiangjun Zheng ◽  
Jinghua Tian ◽  
Chao Jin ◽  
...  

The application of MnCo2O4 (MCO) decorated Ti4O7 as a carbon-free cathode for Li–O2 batteries is reported for the first time. The high performance of Ti4O7/MCO cathode is attributed to the high electronic conductivity of Ti4O7, the high electrocatalytic activity of MCO and the synergistic interaction between Ti4O7 and MCO toward ORR and OER.


2015 ◽  
Vol 3 (34) ◽  
pp. 8804-8809 ◽  
Author(s):  
Afzaal Qamar ◽  
Hoang-Phuong Phan ◽  
Jisheng Han ◽  
Philip Tanner ◽  
Toan Dinh ◽  
...  

This communication reports for the first time, the impact of device geometry on the stress-dependent offset voltage of single crystal p-type 3C–SiC four terminal devices.


1989 ◽  
Vol 145 ◽  
Author(s):  
E. F. Schubert ◽  
T. D. Harris ◽  
J. E. Cunningham

AbstractOptical absorption and photoluminescence experiments are performed on GaAs doping superlattices, which have a δ-function-like doping profile of alternating n-type and p-type dopant sheets. Absorption and emission spectra reveal for the first time the clear signature of quantum-confined interband transitions. The peaks of the experimental absorption and luminescence spectra are assigned to calculated energies of quantum-confined transitions with very good agreement. It is shown that the employment of the δ-doping technique results in improved optical properties of doping superlattices.


2016 ◽  
Vol 4 (43) ◽  
pp. 10309-10314 ◽  
Author(s):  
Chang-Ho Choi ◽  
Jenna Y. Gorecki ◽  
Zhen Fang ◽  
Marshall Allen ◽  
Shujie Li ◽  
...  

Low temperature fabrication of printed p-type CuI TFTs was reported for the first time.


1992 ◽  
Vol 242 ◽  
Author(s):  
Jun-Ichi Nishizawa ◽  
Ken Suto ◽  
Yutaka Oyama

ABSTRACTVapor pressure control technology is successfully applied to the bulk crystal growth, epitaxial growth and diffusion process of ZnSe crystals. Surface morphology and the crystal quality are investigated by the optical microscope and the X-ray double crystal diffractometry as the function of the growth temperature and the applying Zn vapor pressure. The cathode luminescence is also measured to evaluate the optical properties and the effect of low temperature growth and the application of Zn vapor pressure are demonstrated, p-type ZnSe crystals are grown from the Se solution with group Ia element as a dopant under controlled Zn vapor pressure, p-n junction diodes are also prepared by the Ga diffusion from Zn solution under Se vapor pressure. Emission spectra from the p-n junction and its Zn and Se vapor pressure dependencies are also presented.


RSC Advances ◽  
2018 ◽  
Vol 8 (6) ◽  
pp. 3009-3013 ◽  
Author(s):  
Tuan-Khoa Nguyen ◽  
Hoang-Phuong Phan ◽  
Jisheng Han ◽  
Toan Dinh ◽  
Abu Riduan Md Foisal ◽  
...  

This paper presents for the first time a p-type 4H silicon carbide (4H-SiC) van der Pauw strain sensor by utilizing the strain induced effect in four-terminal devices.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Pablo Cayado ◽  
Hannes Rijckaert ◽  
Els Bruneel ◽  
Manuela Erbe ◽  
Jens Hänisch ◽  
...  

Abstract For the first time, GdBa2Cu3O7−x nanocomposites were prepared by chemical solution deposition following the ex-situ approach. In particular, ~ 220 nm GdBa2Cu3O7−x-HfO2 (GdBCO-HfO2) nanocomposite films were fabricated starting from a colloidal solution of 5 mol% HfO2 nanoparticles. Hereby, one of the main challenges is to avoid the accumulation of the nanoparticles at the substrate interface during the pyrolysis, which would later prevent the epitaxial nucleation of the GdBCO grains. Therefore, the effect of pyrolysis processing parameters such as heating ramp and temperature on the homogeneity of the nanoparticle distribution has been investigated. By increasing the heating ramp to 300 °C/h and decreasing the final temperature to 300 °C, a more homogenous nanoparticle distribution was achieved. This translates into improved superconducting properties of the grown films reaching critical temperatures (Tc) of 94.5 K and self-field critical current densities ($${J}_{\mathrm{c}}^{\mathrm{sf}}$$ J c sf ) at 77 K of 2.1 MA/cm2 with respect to films pyrolyzed at higher temperatures or lower heating ramps.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jean-Christophe Daigle ◽  
Yuichiro Asakawa ◽  
Mélanie Beaupré ◽  
Vincent Gariépy ◽  
René Vieillette ◽  
...  

AbstractLithium titanium oxide (Li4Ti5O12)-based cells are a promising technology for ultra-fast charge-discharge and long life-cycle batteries. However, the surface reactivity of Li4Ti5O12 and lack of electronic conductivity still remains problematic. One of the approaches toward mitigating these problems is the use of carbon-coated particles. In this study, we report the development of an economical, eco-friendly, and scalable method of making a homogenous 3D network coating of N-doped carbons. Our method makes it possible, for the first time, to fill the pores of secondary particles with carbons; we reveal that it is possible to cover each primary nanoparticle. This unique approach permits the creation of lithium-ion batteries with outstanding performances during ultra-fast charging (4C and 10C), and demonstrates an excellent ability to inhibit the degradation of cells over time at 1C and 45 °C. Furthermore, using this method, we can eliminate the addition of conductive carbons during electrode preparation, and significantly increase the energy density (by weight) of the anode.


Sign in / Sign up

Export Citation Format

Share Document