scholarly journals Systematic analyses of the roles of Solanum Lycopersicum ABA receptors in environmental stress and development

Author(s):  
Assaf Mosquna ◽  
Sean Cutler

Drought and other abiotic stresses have major negative effects on agricultural productivity. The plant hormone abscisic acid (ABA) regulates many responses to environmental stresses and can be used to improve crop performance under stress. ABA levels rise in response to diverse abiotic stresses to coordinate physiological and metabolic responses that help plants survive stressful environments. In all land plants, ABA receptors are responsible for initiating a signaling cascade that leads to stomata closure, growth arrest and large-scale changes in transcript levels required for stress tolerance. We wanted to test the meaning of root derived ABA signaling in drying soil on water balance. To this end we generated transgenic tomato lines in which ABA signaling is initiated by a synthetic agonist- mandipropamid. Initial study using a Series of grafting experiments indicate that that root ABA signaling has no effect on the immediate regulation of stomata aperture. Once concluded, these experiments will enable us to systematically dissect the physiological role of root-shoot interaction in maintaining the water balance in plants and provide new tools for targeted improvement of abiotic stress tolerance in crop plants. 

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 623
Author(s):  
Sidra Habib ◽  
Yee Yee Lwin ◽  
Ning Li

Adverse environmental factors like salt stress, drought, and extreme temperatures, cause damage to plant growth, development, and crop yield. GRAS transcription factors (TFs) have numerous functions in biological processes. Some studies have reported that the GRAS protein family plays significant functions in plant growth and development under abiotic stresses. In this study, we demonstrated the functional characterization of a tomato SlGRAS10 gene under abiotic stresses such as salt stress and drought. Down-regulation of SlGRAS10 by RNA interference (RNAi) produced dwarf plants with smaller leaves, internode lengths, and enhanced flavonoid accumulation. We studied the effects of abiotic stresses on RNAi and wild-type (WT) plants. Moreover, SlGRAS10-RNAi plants were more tolerant to abiotic stresses (salt, drought, and Abscisic acid) than the WT plants. Down-regulation of SlGRAS10 significantly enhanced the expressions of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) to reduce the effects of reactive oxygen species (ROS) such as O2− and H2O2. Malondialdehyde (MDA) and proline contents were remarkably high in SlGRAS10-RNAi plants. Furthermore, the expression levels of chlorophyll biosynthesis, flavonoid biosynthesis, and stress-related genes were also enhanced under abiotic stress conditions. Collectively, our conclusions emphasized the significant function of SlGRAS10 as a stress tolerate transcription factor in a certain variety of abiotic stress tolerance by enhancing osmotic potential, flavonoid biosynthesis, and ROS scavenging system in the tomato plant.


Author(s):  
Ali Razzaq ◽  
Ghulam Mustafa ◽  
Muhammad Amjad Ali ◽  
Muhammad Sarwar Khan ◽  
Faiz Ahmad Joyia

Abstract This chapter discusses the applications of CRISPR-mediated genome editing to improve the abiotic stress tolerance (such as drought, heat, waterlogging and cold tolerance) of maize. CRISPR/Cas9 has great potential for maize genome manipulation at desired sites. By using CRISPR/Cas9-mediated genome editing, numerous genes can be targeted to produce elite maize cultivars that minimize the challenges of abiotic stresses. In the future, more precise and accurate variants of the CRISPR/Cas9 toolbox are expected to be used for maize yield improvement.


2019 ◽  
Vol 20 (21) ◽  
pp. 5321 ◽  
Author(s):  
ul Haq ◽  
Khan ◽  
Ali ◽  
Khattak ◽  
Gai ◽  
...  

Due to the present scenario of climate change, plants have to evolve strategies to survive and perform under a plethora of biotic and abiotic stresses, which restrict plant productivity. Maintenance of plant protein functional conformation and preventing non-native proteins from aggregation, which leads to metabolic disruption, are of prime importance. Plant heat shock proteins (HSPs), as chaperones, play a pivotal role in conferring biotic and abiotic stress tolerance. Moreover, HSP also enhances membrane stability and detoxifies the reactive oxygen species (ROS) by positively regulating the antioxidant enzymes system. Additionally, it uses ROS as a signal to molecules to induce HSP production. HSP also enhances plant immunity by the accumulation and stability of pathogenesis-related (PR) proteins under various biotic stresses. Thus, to unravel the entire plant defense system, the role of HSPs are discussed with a special focus on plant response to biotic and abiotic stresses, which will be helpful in the development of stress tolerance in plant crops.


2019 ◽  
Author(s):  
Nouf Owdah Alshareef ◽  
Elodie Rey ◽  
Holly Khoury ◽  
Mark Tester ◽  
Sandra M. Schmöckel

AbstractChenopodium quinoa Willd. (quinoa) is a pseudocereal with high nutritional value and relatively high tolerance to several abiotic stresses, including water deficiency and salt stress, making it a suitable plant for the study of mechanisms of abiotic stress tolerance. NAC (NAM, ATAF and CUC) transcription factors are involved in a range of plant developmental processes and in the response of plants to biotic and abiotic stresses. In the present study, we perform a genome-wide comprehensive analysis of the NAC transcription factor gene family in quinoa. In total, we identified 107 quinoa NAC transcription factor genes, distributed equally between sub-genomes A and B. They are phylogenetically clustered into two major groups and 18 subgroups. Almost 75% of the identified CqNAC genes were duplicated two to seven times and the remaining 25% of the CqNAC genes were found as a single copy. We analysed the transcriptional responses of the identified quinoa NAC TF genes in response to various abiotic stresses. The transcriptomic data revealed 28 stress responsive CqNAC genes, where their expression significantly changed in response to one or more abiotic stresses, including salt, water deficiency, heat and phosphate starvation. Among these stress responsive NACs, some were previously known to be stress responsive in other species, indicating their potentially conserved function in response to abiotic stress across plant species. Six genes were differentially expressed specifically in response to phosphate starvation but not to other stresses, and these genes may play a role in controlling plant responses to phosphate deficiency. These results provide insights into quinoa NACs that could be used in the future for genetic engineering or molecular breeding.


2021 ◽  
Vol 22 (20) ◽  
pp. 11032
Author(s):  
Jamie A. O’Rourke ◽  
Michael J. Morrisey ◽  
Ryan Merry ◽  
Mary Jane Espina ◽  
Aaron J. Lorenz ◽  
...  

The soybean (Glycine max L. merr) genotype Fiskeby III is highly resistant to a multitude of abiotic stresses, including iron deficiency, incurring only mild yield loss during stress conditions. Conversely, Mandarin (Ottawa) is highly susceptible to disease and suffers severe phenotypic damage and yield loss when exposed to abiotic stresses such as iron deficiency, a major challenge to soybean production in the northern Midwestern United States. Using RNA-seq, we characterize the transcriptional response to iron deficiency in both Fiskeby III and Mandarin (Ottawa) to better understand abiotic stress tolerance. Previous work by our group identified a quantitative trait locus (QTL) on chromosome 5 associated with Fiskeby III iron efficiency, indicating Fiskeby III utilizes iron deficiency stress mechanisms not previously characterized in soybean. We targeted 10 of the potential candidate genes in the Williams 82 genome sequence associated with the QTL using virus-induced gene silencing. Coupling virus-induced gene silencing with RNA-seq, we identified a single high priority candidate gene with a significant impact on iron deficiency response pathways. Characterization of the Fiskeby III responses to iron stress and the genes underlying the chromosome 5 QTL provides novel targets for improved abiotic stress tolerance in soybean.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 788 ◽  
Author(s):  
Youngdae Yoon ◽  
Deok Hyun Seo ◽  
Hoyoon Shin ◽  
Hui Jin Kim ◽  
Chul Min Kim ◽  
...  

Abiotic stresses, such as drought, high temperature, and salinity, affect plant growth and productivity. Furthermore, global climate change may increase the frequency and severity of abiotic stresses, suggesting that development of varieties with improved stress tolerance is critical for future sustainable crop production. Improving stress tolerance requires a detailed understanding of the hormone signaling and transcriptional pathways involved in stress responses. Abscisic acid (ABA) and jasmonic acid (JA) are key stress-response hormones in plants, and some stress-responsive transcription factors such as ABFs and MYCs function as direct components of ABA and JA signaling, playing a pivotal role in plant tolerance to abiotic stress. In addition, extensive studies have identified other stress-responsive transcription factors belonging to the NAC, AP2/ERF, MYB, and WRKY families that mediate plant response and tolerance to abiotic stress. These suggest that transcriptional regulation of stress-responsive genes is an essential step to determine the mechanisms underlying plant stress responses and tolerance to abiotic stress, and that these transcription factors may be important targets for development of crops with enhanced abiotic stress tolerance. In this review, we briefly describe the mechanisms underlying plant abiotic stress responses, focusing on ABA and JA metabolism and signaling pathways. We then summarize the diverse array of transcription factors involved in plant responses to abiotic stress, while noting their potential applications for improvement of stress tolerance.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
G. Praveen Kumar ◽  
S. K. Mir Hassan Ahmed ◽  
Suseelendra Desai ◽  
E. Leo Daniel Amalraj ◽  
Abdul Rasul

Plant growth promoting rhizobacteria (PGPR) has been identified as a group of microbes that are used for plant growth enhancement and biocontrol for management of plant diseases. The inconsistency in performance of these bacteria from laboratory to field conditions is compounded due to the prevailing abiotic stresses in the field. Therefore, selection of bacterial strains with tolerance to abiotic stresses would benefit the end-user by successful establishment of the strain for showing desired effects. In this study we attempted to isolate and identify strains of Bacillus and Pseudomonas spp. with stress tolerance and proven ability to inhibit the growth of potential phytopathogenic fungi. Screening of bacterial strains for high temperature (50°C), salinity (7% NaCl), and drought (−1.2 MPa) showed that stress tolerance was pronounced less in Pseudomonas isolates than in Bacillus strains. The reason behind this could be the formation of endospores by Bacillus isolates. Tolerance to drought was high in Pseudomonas strains than the other two stresses. Three strains, P8, P20 and P21 showed both salinity and temperature tolerance. P59 strain possessed promising antagonistic activity and drought tolerance. The magnitude of antagonism shown by Bacillus isolates was also higher when compared to Pseudomonas strains. To conclude, identification of microbial candidate strains with stress tolerance and other added characteristic features would help the end-user obtain the desired beneficial effects.


2021 ◽  
Vol 13 (4) ◽  
pp. 2078
Author(s):  
Manzoor H. Dar ◽  
Dilruba A. Bano ◽  
Showkat A. Waza ◽  
Najam W. Zaidi ◽  
Asma Majid ◽  
...  

Rice is globally a major food crop and its production has progressively been affected by various types of abiotic stresses especially drought, flooding, salinity, heat and cold in most of the cultivable rice ecosystems. The incidence, intensity and duration of these stresses are anticipated to aggravate due to climate change consequences, demanding resilient yields in these situations to be essential. Present paper deals with reviewing various types of abiotic stresses and their mitigation strategies for enhancing and stabilizing rice production in stress prone areas. Review of available literature pertaining to the study area has been used as research methodology for this paper. The available literature suggests that stress-tolerant varieties can serve as the most viable strategy to contribute in coping with the problem of abiotic stresses. Although, good progress has been made in the development of stress-tolerant rice varieties (STRVs) and incessant efforts are being made to spread these varieties in target areas, adoption by farmers is yet to meet expectations. Advantage, affordability, awareness and availability are the main factors responsible for adopting of any technology. The adoption of stress-tolerant varieties has not reached its potential, predominantly due to the lack of awareness and non-availability of seeds amongst farmers. Strategic and intentional collaborations should be ensured for scaling the sustainable delivery and diffusion of STRVs. A promotional roadmap that ensures the linkages between private and public seed sectors remains the key factor for its successful adoption. Similarly, strengthening of formal, informal and semi-formal seed systems is crucial to accelerate the dissemination of these varieties. There is an imperative need to create strategic plans for the development of varieties possessing multiple stress tolerance. Significant investments for sustainability of rice production in stress prone areas form the essential component of long-term agricultural development. The sooner these investments and strategies are accomplished, the greater the gains are expected.


Author(s):  
Miriam Pardo-Hernandez ◽  
Maria Lopez-Delacalle ◽  
Rosa M Rivero

Abiotic stress in plants is an increasingly common problem in agriculture, and thus, studies on plant treatments with specific certain compounds that may help to mitigate these effects have increased in recent years Melatonin (MET) application and its role in mitigating the negative effects of abiotic stress in plants have become important in the last few years. MET, a derivative of tryptophan, is an important plant-related response molecule involved in the growth, development, and reproduction of plants, and the induction of different stress factors. In addition, MET plays a protective role against different abiotic stresses such as salinity, high/low temperature, high light, waterlogging, nutrient deficiency and stress combination by regulating both the enzymatic and non-enzymatic antioxidant defense systems. Also, MET interacts with many signaling molecules, among these, reactive oxygen species (ROS) and nitric oxide (NO), and participates in a wide variety of physiological reactions. It is well known that NO produces S-nitrosylation and NO2-Tyr of important antioxidant-related proteins, being this an important mechanism for maintaining the antioxidant capacity of the AsA/GSH cycle under nitro-oxidative conditions, being extensively reviewed here under different abiotic stress conditions. Lastly, in this review, we show the coordination between NO and MET as a long-range signaling molecule, regulating many responses in plants, including plant growth and abiotic stress tolerance. Despite all the knowledge acquired over the years, there is still more to know about how MET and NO act on tolerance to abiotic stresses.


Sign in / Sign up

Export Citation Format

Share Document