scholarly journals Designing a filament recycling extruder

2021 ◽  
Vol 11 (1) ◽  
pp. 46-52
Author(s):  
Barbara Kmetz ◽  
Ágnes Takács

In this paper we can read about designing and building a filament recycling machine especially designed for 3D printers. 3D printing is quite popular nowadays, but unfortunately the base material of this technique is polymer, which is not an environmentally friendly material, but it can be recycled in most of the cases. The filament pieces are shredded beforehand with a shredding machine to get the appropriate size. After being chopped up and heated up to the given temperature, according to the materials specific parameters the filament can be melted down and extruded again. The study deals with designing a recycling machine as mentioned.

2018 ◽  
Vol 69 (4) ◽  
pp. 840-842
Author(s):  
Wojciech Musialik ◽  
Marcin Nabialek ◽  
Slawomir Letkiewicz ◽  
Andrei Victor Sandu ◽  
Katarzyna Bloch

The paper presents the possibility of using an innovative hydroxyapatite filament Ca10(PO4)6(OH)2 for printing in 3D printers of bone implants and the possibility of using it during implantation with voice prostheses. The introduction of an additional colloidal silver composite in voice implants will contribute to the reduction of bacterial infections, fungal infections and granulomatous hyperplasia. The creation of a stable external ring of the vocal fistula will remove complications associated with it with enlargement of the fistula and leakiness of voice implants. The ability to print with a hydroxyapatite filament will allow digital pre-surgery modeling of bone implants suited to the needs of surgical procedures.


2021 ◽  
pp. 004005992110101
Author(s):  
A. Chloe Simpson ◽  
Andrea Ruth Taliaferro

While assistive technology is often suggested as a way to increase, maintain, or improve functional ability for individuals with disabilities within physical activity (PA) settings, cost and availability of such items are often noted as barriers. In recent years, 3D printing has become available to the general public through the adoption of 3D printers in schools, libraries, and universities. Through individual design and rapid prototyping, 3D printing can support physical educators in accommodating student need for assistive technology through a multitude of modification possibilities. This article will highlight the capacity for 3D printed assistive technology within educational settings, and will illustrate how teachers, APE specialists, and other related service personnel can utilize this technology to support student success in PE and PA settings. This article will also assist practitioners with locating, uploading, and utilizing existing collections of 3D assistive technology models from open-source websites, such as Thingiverse.


Machines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 150
Author(s):  
Andrei Marius Mihalache ◽  
Gheorghe Nagîț ◽  
Laurențiu Slătineanu ◽  
Adelina Hrițuc ◽  
Angelos Markopoulos ◽  
...  

3D printing is a process that has become widely used in recent years, allowing the production of parts with relatively complicated shapes from metallic and non-metallic materials. In some cases, it is challenging to evaluate the ability of 3D printers to make fine details of parts. For such an assessment, the printing of samples showing intersections of surfaces with low angle values was considered. An experimental plan was designed and materialized to highlight the influence of different factors, such as the thickness of the deposited material layer, the printing speed, the cooling and filling conditions of the 3D-printed part, and the thickness of the sample. Samples using areas in the form of isosceles triangles with constant height or bases with the same length, respectively, were used. The mathematical processing of the experimental results allowed the determination of empirical mathematical models of the power-function type. It allowed the detection of both the direction of actions and the intensity of the influence exerted by the input factors. It is concluded that the strongest influence on the printer’s ability to produce fine detail, from the point of view addressed in the paper, is exerted by the vertex angle, whose reduction leads to a decrease in printing accuracy.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2545
Author(s):  
Marcin Hoffmann ◽  
Krzysztof Żarkiewicz ◽  
Adam Zieliński ◽  
Szymon Skibicki ◽  
Łukasz Marchewka

Foundation piles that are made by concrete 3D printers constitute a new alternative way of founding buildings constructed using incremental technology. We are currently observing very rapid development of incremental technology for the construction industry. The systems that are used for 3D printing with the application of construction materials make it possible to form permanent formwork for strip foundations, construct load-bearing walls and partition walls, and prefabricate elements, such as stairs, lintels, and ceilings. 3D printing systems do not offer soil reinforcement by making piles. The paper presents the possibility of making concrete foundation piles in laboratory conditions using a concrete 3D printer. The paper shows the tools and procedure for pile pumping. An experiment for measuring pile bearing capacity is described and an example of a pile deployment model under a foundation is described. The results of the tests and analytical calculations have shown that the displacement piles demonstrate less settlement when compared to the analysed shallow foundation. The authors indicate that it is possible to replace the shallow foundation with a series of piles combined with a printed wall without locally widening it. This type of foundation can be used for the foundation of low-rise buildings, such as detached houses. Estimated calculations have shown that the possibility of making foundation piles by a 3D printer will reduce the cost of making foundations by shortening the time of execution of works and reducing the consumption of construction materials.


Author(s):  
Verma Walker, MLIS

Three-dimensional (3D) printing is opening new opportunities in biomedicine by enabling creative problem solving, faster prototyping of ideas, advances in tissue engineering, and customized patient solutions. The National Institutes of Health (NIH) Library purchased a Makerbot Replicator 2 3D printer to give scientists a chance to try out this technology. To launch the service, the library offered training, conducted a survey on service model preferences, and tracked usage and class attendance. 3D printing was very popular, with new lab equipment prototypes being the most common model type. Most survey respondents indicated they would use the service again and be willing to pay for models. There was high interest in training for 3D modeling, which has a steep learning curve. 3D printers also require significant care and repairs. NIH scientists are using 3D printing to improve their research, and it is opening new avenues for problem solving in labs. Several scientists found the 3D printer so helpful they bought one for their labs. Having a printer in a central and open location like a library can help scientists, doctors, and students learn how to use this technology in their work.


Author(s):  
Adam Brian Nulty

Introduction: The current generation of 3D printers are lighter, cheaper, and smaller, making them more accessible to the chairside digital dentist than ever before. 3D printers in general in the industrial and chairside setting can work with various types of materials including, metals, ceramics, and polymers. Evidence presented in many studies show that an ideal material used for dental restorations is characterised by several properties related to durability, cost-effectiveness, and high performance. This review is the second part in a 3D Printing series that looks at the literature on material science and applications for these materials in 3D printing as well as a discussion on the potential further development and future evolution in 3D printing materials. Conclusions: Current materials in 3D printing provide a wide range of possibilities for providing more predictable workflows as well as improving efficiency through less wasteful additive manufacturing in CAD/CAM procedures. Incorporating a 3D printer and a digital workflow into a dental practice is challenging but the wide range of manufacturing options and materials available mean that the dentist should be well prepared to treat patients with a more predictable and cost effective treatment pathway. As 3D printing continues to become a commonplace addition to chair side dental clinics, the evolution of these materials, in particular reinforced PMMA, resin incorporating zirconia and glass reinforced polymers offer increased speed and improved aesthetics that will likely replace subtractive manufacturing milling machines for most procedures.


2019 ◽  
Vol 2 (22) ◽  
pp. 183-194
Author(s):  
Ewelina Małek ◽  
Danuta Miedzińska ◽  
Arkadiusz Popławski ◽  
Wiesław Szymczyk

In the field of numerical research there are various approaches and methods for structures of porous materials modeling. The solution is the use of fractal models to develop the porous structure. In the case of modeling the geometry of natural (random) materials, there is a problem of compatibility of the FE model geometry and real one. This is a source of differences between the results of calculations and experimental ones. Application of 3D printing technology will allow to receive a real structure in a controlled manner, which exactly reflects the designed structure and is consistent with the geometry of the numerical model. An experimental research on the standard samples made of photopolymer resin using 3D printing technique was presented in the paper. The aim of the research was to determine the base material properties and, consequently, to select the constitutive model, which is necessary to carry out numerical analyses.


2022 ◽  
Vol 3 (1) ◽  
pp. 136-177
Author(s):  
Lucia García-Guzmán ◽  
Gustavo Cabrera-Barjas ◽  
Cintya G. Soria-Hernández ◽  
Johanna Castaño ◽  
Andrea Y. Guadarrama-Lezama ◽  
...  

The food packaging sector generates large volumes of plastic waste due to the high demand for packaged products with a short shelf-life. Biopolymers such as starch-based materials are a promising alternative to non-renewable resins, offering a sustainable and environmentally friendly food packaging alternative for single-use products. This article provides a chronology of the development of starch-based materials for food packaging. Particular emphasis is placed on the challenges faced in processing these materials using conventional processing techniques for thermoplastics and other emerging techniques such as electrospinning and 3D printing. The improvement of the performance of starch-based materials by blending with other biopolymers, use of micro- and nano-sized reinforcements, and chemical modification of starch is discussed. Finally, an overview of recent developments of these materials in smart food packaging is given.


2020 ◽  
pp. 116-135
Author(s):  
Norman Gwangwava ◽  
Albert U Ude ◽  
Enock Ogunmuyiwa ◽  
Richard Addo-Tenkorang

3D printing, also known as additive manufacturing, is becoming the industry standard for manufacturing and prototyping. Although the technology is very old, it gained a huge traction in the past two decades. 3D printing favors unique once-off orders (mass customization) in contrast to mass production. This calls for innovative business models in order to realize economic gains from the technology. Increased product innovations in the global economy also contribute to wide adoption of 3D printing unlike in the old days. A transition in the manufacturing field has brought e-manufacturing and now cloud-based manufacturing. Machines, including 3D printers, in the past were not Internet-enabled but modern designs have the capability of Internet connectivity. Cloud-based 3D printing is a new model of design that has a significant impact on today's entrepreneurs. This article focuses on a business case for a cloud-based approach in consumer product niches. A cloud-based 3D printing business model (3D-Cloud) is developed based on the business model canvas, which promises major breakthroughs in e-entrepreneurship innovation. The model uses a virtual community approach to bring together technocrats, enthusiasts, and shared 3D printer facilities of common interests, whilst promoting an enterprising spirit.


Geometric or 3D modeling playing key role in geometry definition. These modelers evolved from wire-frame models to Boundary representations or CSG models in solid modeling or Bezier spline or Non-uniform rational B-spline representation. After modeling process, using internal representation, part will be post-processed for manufacturing. Variety of postprocessors existing, and using unique G-code standard we producing on CNC machines requested parts. 3D Printers use the same G-Code standards with extensions for more than ten M functions that programmers use for setting 3D printing parameters different than we using for CNC manufacturing. List of M functions varies depend of the manufacturer.


Sign in / Sign up

Export Citation Format

Share Document