scholarly journals Clarification of Reprocessed Syrup and Use in the Formulation of Lollipop-Type Hard Candies

2020 ◽  
Vol 10 (6) ◽  
pp. 6846-6864

The objective was to evaluate the removal of dye using activated carbon, and apply the best condition in the removal of candy reprocessing syrup pigment, as well as to evaluate its influence in the visual aspect of a lollipop. Adsorption capacity tests were performed with the dye diluted with and without sucrose, and from the data, the linearization of the Langmuir and Freundlich isotherms were calculated. The lollipop was prepared with syrup treated with activated carbon and visually evaluated using a panel of untrained tasters. The Freundlich isotherm adjusted more appropriately to the experimental data of the adsorption of the dye diluted in distilled water, while for the dye diluted in sucrose solution, the most suitable model was Langmuir's. The experimental design condition showed the highest adsorptive capacity (26.91 mg.g-1) for the dye diluted in the aqueous solution was at a temperature of 60 ºC and pH 5.5, while for the sucrose-diluted dye solution, was 103.09 mg.g-1, under the same conditions. The visual evaluation of the lollipop indicated the possibility of adding up to 15% of reprocessing syrup. Thus, the use of activated carbon is an alternative to remove the coloring from candy syrup and enable its reuse within the industry.

2017 ◽  
Vol 23 (3) ◽  
pp. 223 ◽  
Author(s):  
H.B. Senin ◽  
O. Subhi ◽  
R. Rosliza ◽  
N. Kancono ◽  
M.S. Azhar ◽  
...  

Sawdust, inexpensive material has been utilized as an absorbent for the removal of iron from aqueous solution for their safe disposal. The adsorption experiments of untreated sawdust (SD) and treated sawdust (SDC) have been carried out at room temperature using the batch test. The Langmuir and Freundlich isotherms were used to observe sorption phenomena of sawdust in the removal of iron. The results indicate that the sawdust was capable in removing iron in aqueous solution. The results have shown that the Langmuir isotherm was found well fitted into the experimental data as compared to the Freundlich isotherm. It was found that, chemisorptions and physisorption were the prime mechanism for the process of adsorption to occur between the sawdust and iron. The results also proved that the acid sulphuric treated sawdust is much better than that of untreated sawdust as an adsorbent for iron.


2006 ◽  
Vol 53 (11) ◽  
pp. 251-260 ◽  
Author(s):  
H. Tsuno ◽  
M. Kawamura ◽  
T. Oya

An expanded-bed anaerobic reactor with granular activated carbon (GAC) medium has been developed to treat wastewaters that contain a high concentration of inhibitory and/or refractory organic compounds as well as readily degradable organic compounds. The process is characterised by a combination of two removal mechanisms; adsorption on GAC and biological degradation by microorganisms grown on GAC. Applicability of the reactor to treatment of phenol, chloroacetaldehyde (CAA), pentachlorophenol (PCP) and tetrachloroethylene (PCE) was discussed based on experimental data. All chemicals focused on here were removed well and stably at a removal efficiency of more than 98% even during starting operation and shock load operation. Chemicals in influent that exceeded biological degradation capacity was initially adsorbed on GAC and then gradually degraded, and hence the adsorptive capacity of GAC was regenerated biologically. These results proved that a biological activated carbon anaerobic reactor was effective for treatment of wastewater containing hazardous chemicals, especially for strongly absorbable chemicals, as well as readily degradable organic compounds at high concentration.


2011 ◽  
Vol 704-705 ◽  
pp. 486-491
Author(s):  
Yi Nan Hao ◽  
Xi Ming Wang ◽  
Li Jun Ding ◽  
Da Yan Ma

Xanthoceras Sorbifolia Bunge hull activated carbon (XSBHAC) developed by phosphoric acid activation for removing basic fuchsin (BF) has been investigated. Experiments were carried out as function of contact time, pH (4-10) and temperature (303,313 and 323K). Adsorption isotherms were modeled with the Langmuir and Freundlich isotherms. The data fitted well with the Langmuir isotherm. The Langmuir monolayer saturation capacities of BF adsorbed onto activated carbon were 351.35, 354.96 and 355.94 mg/g at 303,313, and 323 K, respectively.The kinetic models were also studied .The rates of adsorption were found to conform to the pseudo-second-order kinetics with good correlation.Using the equilibrium concentration contents obtained at different temperatures, various thermodynamic parameters,such as △G,△H and △S, have been calculated. The thermodynamics parameters of system indicated spontaneous and endothermic process. Key words: Xanthoceras sorbifolia bunge hull;biosorption; basic fuchsin


Processes ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 855 ◽  
Author(s):  
Azry Borhan ◽  
Suzana Yusup ◽  
Jun Wei Lim ◽  
Pau Loke Show

Global warming due to the emission of carbon dioxide (CO2) has become a serious problem in recent times. Although diverse methods have been offered, adsorption using activated carbon (AC) from agriculture waste is regarded to be the most applicable one due to numerous advantages. In this paper, the preparation of AC from rubber-seed shell (RSS), an agriculture residue through chemical activation using potassium hydroxide (KOH), was investigated. The prepared AC was characterized by nitrogen adsorption–desorption isotherms measured in Micrometrices ASAP 2020 and FESEM. The optimal activation conditions were found at an impregnation ratio of 1:2 and carbonized at a temperature of 700 °C for 120 min. Sample A6 is found to yield the largest surface area of 1129.68 m2/g with a mesoporous pore diameter of 3.46 nm, respectively. Using the static volumetric technique evaluated at 25 °C and 1.25 bar, the maximum CO2 adsorption capacity is 43.509 cm3/g. The experimental data were analyzed using several isotherm and kinetic models. Owing to the closeness of regression coefficient (R2) to unity, the Freundlich isotherm and pseudo-second kinetic model provide the best fit to the experimental data suggesting that the RSS AC prepared is an attractive source for CO2 adsorption applications.


2017 ◽  
Vol 76 (7) ◽  
pp. 1697-1705 ◽  
Author(s):  
Tiecheng Guo ◽  
Sicong Yao ◽  
Hengli Chen ◽  
Xin Yu ◽  
Meicheng Wang ◽  
...  

Sewage sludge-based activated carbon is proved to be an efficient and low-cost adsorbent in treatment of various industrial wastewaters. The produced carbon had a well-developed pore structure and relatively low Brunauer–Emmett–Teller (BET) surface area. Adsorptive capacity of typical pollutants, i.e. copper Cu(II) and methylene blue (MB) on the carbon was studied. Adsorptions were affected by the initial solution pH, contact time and adsorbent dose. Results showed that adsorption of Cu(II) and MB on the produced carbon could reach equilibrium after 240 min. The average removal rate for Cu(II) on the carbon was high, up to 97% in weak acidic conditions (pH = 4–6) and around 98% for MB in a very wide pH range (pH = 2–12). The adsorption kinetics were well fitted by the pseudo-second order model, and both Langmuir and Freundlich isotherm models could well describe the adsorption process at room temperature. The theoretical maximum adsorption capacities of Cu(II) and MB on sewage sludge-based activated carbon were 114.94 mg/g and 125 mg/g, respectively. Compared with commercial carbon, the sewage sludge-based carbon was more suitable for heavy metal ions’ removal than dyes’.


BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 6781-6790
Author(s):  
Moammar Elbidi ◽  
Agab Hewas ◽  
Rajab Asar ◽  
Mohamad Amran Mohd Salleh

Removal of phenol from wastewater using local biochar (BC) was investigated, while using activated carbon (AC) as a reference material. The main parameters affecting the sorption process were initial concentration, contact time, pH, and temperature. Statistical analysis of the results showed that the maximum removal percent when using AC and BC were 95% and 55%, respectively. Experimental data showed that the removal of phenol has fast kinetics and reached equilibrium within 5 minutes. The Langmuir and Freundlich isotherm models were applied to fit the adsorption experimental data. Pseudo-first order and pseudo-second order kinetic models were employed.


2012 ◽  
Vol 550-553 ◽  
pp. 2424-2427
Author(s):  
Chung Hsin Wu ◽  
Chao Yin Kuo ◽  
Meng Jia Chen

This study utilizes chitin to remove dissolved Cu(II) from aqueous solutions. The effects of the dissolved Cu(II) concentration, chitin dosage, and pH on adsorption of dissolved Cu(II) by chitin are determined. Adsorption capacity for 20 and 80 mg/L dissolved Cu(II) onto chitin (2 g/L) was 3.86 mg/g and 5.12 mg/g, respectively. The dissolved Cu(II) adsorption percentage increased from 39% to 70% when the chitin dosage was increased from 2 g/L to 4 g/L. The linear correlation coefficients of Langmuir and Freundlich isotherms were obtained. Analytical results demonstrate that the Freundlich isotherm fitted experimental results better than did the Langmuir isotherm. Enthalpy (ΔH0) and entropy (ΔS0) for dissolved Cu(II) adsorption were 8.46 kJ/mol and 123.1 J/mol.K, respectively.


2020 ◽  
Vol 26 (4) ◽  
pp. 200241-0
Author(s):  
Naincy Sahu ◽  
Chandra Bhan ◽  
Jiwan Singh

The present study investigated the adsorption efficiency of magnetic activated carbon was synthesized by waste biomass of Pisum sativum (peel) and pyrolysis at 500˚C temperature (MPPAC-500). Derived activated carbon was applied for removal of fluoride from aqueous solution. The MPPAC-500 was characterized by Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), zeta potential, X-ray Diffraction (XRD) and Particle Size Analyser. The fluoride sequestration study was performed in both batch and column systems. The batch adsorption study was focused on parameter like, adsorbent dose, contact time, pH and initial fluoride concentrations. The maximum capacity of fluoride removal was qo = 4.71 (mg/g). Freundlich isotherm model (R2 -0.995) obeyed better than Langmuir (R<sup>2</sup> -0.979) model. The RL values observed between 0-1 (RL-0.057) inferred the favourable adsorption. Pseudo-second-order model favoured well than pseudo-first-order in the whole experimental data. In case of column study was performed at two different bed height 5 cm and 10 cm having flow rate of 5 mL/min as well as 10 mL/min. The breakthrough curve and column data were interpreted by Thomas, Adams-Bohart, Yoon-Nelson and Clark model. These finding showed that MPPAC-500 has potential adsorptive capacity for fluoride removal from aqueous solutions in batch and column systems.


Sign in / Sign up

Export Citation Format

Share Document