scholarly journals Optimization study of blasting operations in Roşia Poieni open pit mine, Romania

2021 ◽  
Vol 15 (4) ◽  
pp. 43-55
Author(s):  
Mihaela Toderas

Purpose. Drilling-blasting technology is one of the simplest and most often used techniques in open pit mining. This allows the excavation of a large volume of rock and useful mineral substance. The operation of blasting using the energy of explosives plays an important role in open pit exploitation, being also the key element of the blasting process through which a corresponding granulometry is obtained. This operation is a part of a series of interdependent operations, in the sense that each operation determines a certain result that will be an important element for the next operation that takes place in the working face. Consequently, the blasting operation with explosives should not be considered as an independent act. A global approach to the entire production technological process including blasting is required. Methods. In the optimization study, the basic method consisted in the analysis of the blasting operations performed at the drilling diameter of 250 mm (blasting technology used in Roşia Poieni open pit mining) and simulation of the excavation of the same rock volume, with the optimization of the explosive charge distribution at two other drilling diameters: 200 and 150 mm. Findings. The main problems when shooting 250 mm dia holes are caused by the length of the tamping in the mineralized rock that leads to the appearance of blocks with dimensions which are maximum allowed in the crusher tank (1.2-1.3 m). That is why discontinuous loads with intermediate tamping are used – the method that successfully limits their number. In order to obtain a granulometry corresponding to the primary crushing operation, which will allow to decrease the crushing costs, it is necessary to use smaller drilling diameters, but with productivity high enough to ensure the optimal development of the extraction process. Originality. Based on the performed study, it is recommended to use the discontinuous load, preserving the total length of the explosive charge. In the zones where the rocks have a Protodiakonov coefficient f > 6.5, it is recommended to apply an appropriate drilling diameter (150-200 mm) and use the intermediate tamping at 2-3 m length to limit the upper stemming area to a maximum of 7 m (to limit or eliminate the occurrence of oversized blocks). Practical implications. The research results will enhance the geometric and safety factors of the operation, limiting the explosion effect on the massif and the environment and reducing the total costs of the cutting operation. The cost of explosives and initiating materials can be reduced by using a smaller quantity of explosive gels in a dry environment (12-18 kg/hole), the difference in the explosive charge length being completed with AM 1.

2013 ◽  
Vol 58 (2) ◽  
pp. 569-578 ◽  
Author(s):  
M.J. Rahimdel ◽  
M. Ataei ◽  
R. Kakaei ◽  
S.H. Hoseinie

Considering the high investment and operation costs, reliability analysis of mining machineries is essential to achieve a lean operation and to prevent the unwanted stoppages. In open pit mining, drilling, as the initial stage of the exploitation operations, has a significant role in the other stages. Failure of drilling machines causes total delay in blasting operation. In this paper, the reliability of drilling operation has been analyzed using the Markov method. The failure and operation data of four heavy rotary drilling machines in Sarcheshme copper mine in Iran have been used as a case study. Failure rate and repair rate of all machines have been calculated using available data. Then, 16 possible operation states have been defined and the probability of being of drilling fleet in each of the states was calculated using Markov theory. The results showed that there was 77.2% probability that all machines in fleet were in operational condition. It means that, considering 360 working days per year, drilling operation will be in a reliable condition in 277.92 days.


2019 ◽  
Vol 134 ◽  
pp. 01013
Author(s):  
Victor A. Shalamanov ◽  
Sergey N. Shabaev ◽  
Faruz Alama

With open-pit mining method in Kuzbass is widely used automobile transport, transportation costs up to 70% of the cost of coal production. It is not economically feasible to use asphalt concrete and cement concrete as a material of temporary technological roads, and the use of crushed coal-bearing rocks will make it possible to increase the efficiency of coal mining by open method. Currently, the question of the application of the coal-bearing rocks for building temporary technological roads is poorly studied. The paper proposes a method of determining the thickness of road pavements of technological roads, which can be applied directly by the mining company, their analysis has been carried out, the dependence from the strength factor and the category of blockiness of foundation rocks has been determined.


2020 ◽  
Vol 59 (3) ◽  
pp. 131-139
Author(s):  
Nikolay Maksimovich SUSLOV ◽  
◽  
Stanislav Alekseevich CHERNUKHIN ◽  
Dmitriy Nikolaevich SUSLOV ◽  
◽  
...  

Relevance of the work. Reducing the cost of mining in the course of open pit mining has always been considered one of the important tasks in the mining industry; it allows to reduce the cost of the extracted ore. When developing quarries, the most costly work, in which there is no direct mining, is the overburden of waste rocks. The method of stripping operations is one of the most efficient and highly productive, which uses a non-transport technology with a walking dragline excavator. Moving such powerful machines is energy-intensive and affects the efficiency of the machine as a whole, therefore, the modernization of the walking mechanism will increase the energy efficiency of the excavator and ultimately reduce the cost of mining. The most common mechanism for moving such machines is a hydraulically driven three-bearing mechanism. This paper describes the proposed modernization of such a walking mechanism, which makes it possible to get rid of two main disadvantages, namely, the lack of energy recuperation of the lifted machine along the path and the dragging of the base edge against the ground, which creates additional resistance to movement. The installation of hydraulic accumulators in the hydraulic system of the drive of the movement of the machine will allow accumulating the energy of the machine raised above the ground when walking, and the introduction of an additional support shoe into the support base of the machine will get rid of dragging the base. In general, the presented modernization of the mechanism will reduce the energy consumption of moving a dragline excavator with a three-bearing walking mechanism with a hydraulic drive and, ultimately, reduce the cost of mining. Purpose of the work: to improve the efficiency of the dragline as a whole by increasing the energy efficiency of its movement. Objectives: consider design changes to reduce the energy cost of moving the dragline. Results. A variant of adding a support shoe into the walking mechanism is considered, which makes it possible to eliminate the friction of the base against the rock along the path by completely separating the base from the ground. Calculations of energy consumption of mechanisms for different types of draglines with the existing and proposed mechanism are carried out. Conclusions, application of results. The calculations given in this paper allow us to conclude about the effectiveness of the changes made to the design of the walking mechanism. The proposed mechanism allows you to significantly reduce the cost of moving and get rid of the disadvantages inherent in the existing mechanism.


Author(s):  
Ivan Vladimirovich Chicherin ◽  
Boris Andreevich Fedosenkov

The article defines the object of control in the form of signals of current trajectories (CT), along which unmanned vehicles (UMV) move. It describes the subject field of research – the principle and technology of forming the signals generated by the computer-aided system for modal controlling the UMVs during their movement along quarry routes. In order to develop procedures for identifying an upcoming trajectory of the UMV when bypassing some static or dynamic obsta-cles, conditions are included in the software and hardware complex for the formation of the UMV corresponding trajectory direction based on assigned sinusoidal-like frequency-time-dependent functions (chirp signals) responsible for redirecting the UMV along a particular trajectory. The cor-responding chirp signals for the left and right deviation trajectories of the UMV are fixed. The no-tion of sporadic disturbances and force-modal transient processes (TP) is introduced. There has been also reviewed a new description of TP, whose signal contains the variable frequency changing by a certain law depending on the direction and nature of a CT deviation and the environment of UMV. The essence and reasons for the effects of structural and parametric nonstationarity of the control object (CO) are explained. Analytical and graphical interpretations of the emerging non-stationarity caused by the introduction of additional stationary and dynamic-type poles into the CO are presented. It is noted that the stationary poles characterize the inertia of the aperiodic components of the trajectory chirp signals, and the dynamic ones determine the permanently varied frequency of transients (their chirp form). The properties of both sporadic and forced-modal TPs’ poles localized on the complex plane are characterized. Calibration characteristics are determined that establish a relationship between the instantaneous frequency of TP and the metric deviation of UMV CT relative to the nominal axial trajectory. The difference between the procedures of localization and re-localization of poles for modal upward and downward reverse TP, on which the efficiency and safety of UMV moving along the quarry routes, depends, is functionally identified and considered. All the procedures mentioned above make it possible to monitor online and control effectively the dynamics of operative and safe UMV trajectory moving along technological quarry routes in open pit mining


2021 ◽  
Vol 315 ◽  
pp. 01006
Author(s):  
Tatiana Tyuleneva ◽  
Roman Shishkov ◽  
Elena Kucherova ◽  
Marat Moldazhanov

In recent years, there has been a decline in the efficiency of coal mining by traditional methods. On the one hand, the volume of coal outside the contour of the cut, which is economically impractical for open-pit mining, is increasing. On the other hand, when using underground geotechnology, the cost of production exceeds the cost of performing mining operations using open geotechnology, this is due to differences in the factors of operation of the open pit and the mine. This circumstance determines the use of open-underground technology for mining coal reserves outside the contour of the open pit as an actual and promising direction. This article describes a methodological approach based on the use of technological schemes for the preparation and treatment of reserves of powerful shallow coal seams, the justification of the parameters of combined geotechnology with a coordinated and balanced development of open and open-underground mining operations with the distribution of reserves for open and open-underground mining of coal reserves beyond the limit contour of the open pit, the preparation of excavation sites directly from its workings and the coordination of production capacity and the speed of their development. Its application will increase the production capacity of the coal mining complex without additional environmental burden and will provide an increased return on investment.


2020 ◽  
Vol 12 (10) ◽  
pp. 1548 ◽  
Author(s):  
Roksana Zarychta ◽  
Adrian Zarychta ◽  
Katarzyna Bzdęga

Open pit mining leads to irreversible changes in topographical relief, which makes a return to the original morphology virtually impossible. This is important for quarries that were part of former mining areas. This research presents an innovative approach to the reconstruction of the relief of anthropogenically transformed land on the example of Liban Quarry in Cracow, where operations began before 1873 to 1986. The basis for the reconstructed area was a Topographic Map of Poland with a scale 1:10,000 from 1997, from which a set of data was obtained to perform spatial analyses. The estimation was conducted using the ordinary kriging method, enabling a reconstruction of the morphology of the studied area and presenting it in the form of a hypsometric map and a digital elevation model. The correctness of the modelling was verified by cross-validation and a kriging standard deviation map (SDOK). These revealed low values of estimation errors in the places without contour lines on the base map. The comparison of the obtained maps and model with a Tactical Map of Poland with a scale 1:100,000 from 1934 indicated great similarities. The highest interpolation error value was recorded in the part of the pit where the difference between the actual and reconstructed elevation was about 30 m on average. In the exploited part, the SDOK did not exceed 0.52 m, and in the entire studied area, it reached a maximum of 0.56 m. The proposed approach fulfilled the assumptions of reconstruction, as the analysis revealed elements matching the historic relief in both forms of presentation of the topography of the quarry, on the obtained hypsometric map and on the tactical map. Our study is among the very few in the world concerning the application of geostatistics in the restoration of the relief of land transformed by open pit mining activities.


CONVERTER ◽  
2021 ◽  
pp. 571-581
Author(s):  
Haoran Li, Et al.

In order to optimize the Working bench length of inclined composite coal seam open pit mine, Through theoretical analysis and calculation, the relationship between different mining technology working bench and working face transport costs was studied, The influence of the length of the working bench on the stripping ratio of production and the mining with discharging cost of the unit coal in the mining area were studied. Taking the minimum sum of the transportation cost of working face and the cost of mining and discharging of the unit coal as the goal, a mathematical model is established, which takes the working bench as independent variable,the corresponding function curve was obtained, Considering the macroscopic planning of open-pit mine, obtain an optimization method for the length of economical and reasonable working bench of inclined composite coal seam open pit mine on the basis of technical feasibility. A case study of Heishan opencast coal mine,the Results show that when the length of working bench of the 13-2 coal seam is 0.9km, the minimum annual cost of mining and discharging and the transportation cost of the open pit mine were the smallest, and the minimum value is 269 million yuan, Considering the actual pit-limit of Heishan open pit mine, it is concluded that the comprehensive optimum line length of 13-2 coal seam in Heishan open-pit mine is 1.0km.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 949
Author(s):  
Vicenç Carabassa ◽  
Pau Montero ◽  
Josep Maria Alcañiz ◽  
Joan-Cristian Padró

Mining is an essential activity that supports the provision of raw materials. However, the extraction process of mining has deep environmental impacts. For this reason, restoration actions are mandatory, and monitoring is a key step in ensuring the renaturalization of affected areas. Erosion processes are one of the main problems that affect restored areas in extractive activities due to the frequently steep slopes and the difficulty of revegetating the technosols constructed using mining debris. This research aims to develop a method for determining soil losses due to water erosion in mine-restored areas by using Geographic Information Systems (GIS) and Remote Sensing (RS) tools. For the study, images obtained using Unmanned Aerial Systems (UAS) in an open pit mine in the process of restoration are used, from which the Digital Elevation Model (DEM) of the current state of the slopes is obtained (0.10 m spatial resolution). With GIS techniques, ridges of the rills and gullies generated in the slopes are detected, whereby an estimation of a first DEM before the erosive process and a second DEM after the erosive process can be constructed. Each of these DEMs are evaluated individually in order to determine the height differences and estimate the volumetric loss. At the same time, the results are validated with the DEM derived from official mapping agencies’ airborne Lidar data (1.00 m spatial resolution), which yield consistent data in the volumetric quantification of the erosion despite the difference in spatial resolution. In conclusion, the high spatial resolution of drone images facilitated a detailed monitoring of erosive processes, obtaining data from vast and inaccessible slopes that are usually immeasurable with traditional field techniques, and altogether improving the monitoring process of mine restoration.


2012 ◽  
Vol 57 (3) ◽  
pp. 787-798
Author(s):  
Masoud Monjezi ◽  
Zabiholla Ahmadi ◽  
Manoj Khandelwal

Abstract Most open-pit mining operations employ blasting for primary breakage of the in-situ rock mass. Inappropriate blasting techniques can result in excessive damage to the wall rock, decreasing stability and increasing water influx. In addition, it will result in either over and/or under breakage of rocks. The presence of over broken rocks can result in decreased wall stability and require additional excavation. In contrast, the presence of under broken rocks may require secondary blasting and additional crushing. Since blasting is a major cost factor, both cases (under and over breakage) create additional costs reflected in the increase of the operation and maintenance of the machinery. Quick and accurate measurements of fragment size distribution are essential for managing fragmented rock and other materials. Various fragmentation measurement techniques are available and are being used by industry/researchers but most of the methods are time consuming and not precise. An ideally performed blasting operation enormously influences the overall mining cost. This aim can be achieved by proper prediction and attenuation of fragmentation. Prediction of fragmentation is essential for optimizing blasting operation. Poor performance of the empirical models for predicting fragmentation has urged the application of new approaches. In this paper, artificial neural network (ANN) method is implemented to develop a model to predict rock fragmentation size distribution due to blasting in Chadormalu iron mine, Iran. In the development of the proposed ANN model, ten parameters such as UCS, drilling rate, water content, burden, spacing, stemming, hole diameter, bench height, powder factor and charge per delay were incorporated. Training and testing of the model was performed by the back-propagation algorithm using 97 datasets. A four-layer ANN was found to be optimum with architecture of 10-7-5-1. A comparison has made between measured results of fragmentation with predicted results of fragmentation by ANN and multiple regression model. Sensitivity analysis was also performed to understand the effect of each influencing parameters on rock fragmentation.


2017 ◽  
pp. 81-86
Author(s):  
Carolina Navia-Vásquez ◽  
María Camila Monsalve-Hinestroza ◽  
Giovanni Franco-Sepúlveda

The function of all software is to model situations that look like reality, in order to find the most viable conditions for developing a mining project, since in these what is sought is to increase revenue and reduce costs by making better decisions. In this industry investors seek to obtain the highest income in exploiting underground resources, with the aim of achieving return on investment. In this article the discount rate and the cost of rehandling of a mineral deposit hypothetical gold and copper is evaluated using the SIMSCHED DBS software. In turn a search for information, which can give clarity to the concepts with which you are working, is done. Based on the simulations performed with the two economic variables you can select the optimal net present value (NPV) for future flows.


Sign in / Sign up

Export Citation Format

Share Document