Daylight, Solar Radiation, Architectural Expression, and Energy Efficiency of Buildings

2021 ◽  
pp. 6-9
Author(s):  
Alexei K. Solovyov

Building design includes a large number of various issues, which must be taken into account in mutual coordination and with optimal consideration of individual factors. Daylighting, insolation, sun protection in hot weather are factors that directly affect the comfort of the indoor environment in buildings and their energy efficiency. It is noted that the above factors also affect the economy through the cost of housing and through operating costs for replenishing heat losses through windows, for ventilation and cooling of buildings, i.e. on the elimination of heat gains through translucent structures, as well as on artificial lighting, for which electricity costs can be comparable depending on the climatic conditions of the construction site and the design features and architecture of buildings, on artificial lighting technology and on technical solutions for air conditioning and ventilation. It provides topics related to daylight, solar radiation, and translucent structures, directly related to building design, partially reflected in the articles of this issue of Light & Engineering journal. Thus, the interrelation of building design issues with various aspects of lighting technologies is indicated.

2020 ◽  
Vol 1008 ◽  
pp. 72-83
Author(s):  
Asmaa Mohammed Nageib ◽  
Abbas Mohamed El-Zafarany ◽  
Fatma Osman Mohamed ◽  
Mohamed Helmy El-Hefnawy

The office buildings in Egypt, especially in Upper Egypt, reflect serious problems in achieving for energy efficiency as a result of increasing the use of mechanical refrigeration devices in office rooms, due to solar radiation and rising summer temperatures in recent years. Smart windows can play an important role in reducing significantly the energy consumption and maintaining energy inside buildings, also helps to control incoming solar radiation in order to minimize solar gain, especially in summer as well as ensuring the best natural lighting conditions without glare inside a room. This paper aims to evaluate the most efficient daylight and thermal performance of various types of the smart glazing and its impact on the energy consumption in the climatic conditions of one of the office buildings (Diwan governorate) in Sohag governorate as one of Upper Egypt governorates, with determining the best smart glass types for efficient use of energy. The paper follows the theoretical, applied, by studying types of smart glazing and their relation to achieving the energy efficiency. Then using (Energy Plus) simulation tool, which has been used in utilizing its modeling orientation (Design Builder) to study using types of smart glazing on the model of an office room in Building of Diwan governorate of Sohag in the four different orientations (North, East, South and West), when window-to-floor ratios (WFRs) (8%, 16%, 24% and 32%). The paper ends with a presentation of the most important results, recommendations and determination the best types of smart glass that provides energy, daylight without glare and providing greater comfort to users.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2745 ◽  
Author(s):  
Fotiou ◽  
Vita ◽  
Capros

The paper presents a newly developed economic-engineering model of the buildings sector and its implementation for all the European Union (EU) Member States (MS), designed to study in detail ambitious energy efficiency strategies and policies, in the context of deep decarbonisation in the long term. The model has been used to support the impact assessment study that accompanied the European Commission’s communication “A Clear Planet for All”, in November 2018. The model covers all EU countries with a fine resolution of building types, and represents agent decision-making in a complex and dynamic economic-engineering mathematical framework. Emphasis is given to behaviours driving the energy renovation of buildings and the ensuing choice of equipment for heating and cooling. The model represents several market and non-market policies that can influence energy decisions in buildings and promote deep energy renovation. Moreover, the paper presents key applications for supporting policies targeting ambitious reduction of energy consumption and carbon emissions in buildings across Europe. The results illustrate that the achievement of ambitious energy-efficiency targets in the long-term heavily depends on pursuing a fast and extensive renovation of existing buildings, at annual rates between 1.21% and 1.77% for the residential sector and between 0.92% to 1.35% for the services sector. In both cases, the renovation rates are far higher past trends. Strong policies aimed at removing non-market barriers are deemed necessary. Electrification constitutes a reasonable choice for deeply renovated buildings and, as a result, almost 50% of households chooses electric heating over gas heating in the long term. However, heat pumps need to exploit further their learning potential to be economical and implementable for the various climatic conditions in Europe. The results also show that the cost impacts are modest even if renovation and decarbonisation in buildings develop ambitiously in the EU. The reduced energy bills due to energy savings can almost offset the increasing capital expenditures. Fundraising difficulties and the cost of capital are, however, of concern.


2018 ◽  
Vol 70 ◽  
pp. 01013 ◽  
Author(s):  
Sławomir Sowa

The paper presents two ways of using the solar radiation to limit consumption of the electric power for lighting, i.e., increasing the energy efficiency of lighting systems. The solar radiation energy is a generally available type of renewable energy that to a large extent may influence a reduction in consumption of the electric power for lighting. Facilities designers and architects aim at ensuring the highest possible availability of natural lighting in rooms. Usually, lighting systems are not provided with an appropriate control system using the solar radiation. A lack of means for a correct control of the artificial lighting intensity is a factor hindering an improvement of the energy efficiency of the lighting systems. Implementation of the correct control system is possible when distribution of the lighting intensity in a room is known. The studies conducted in this area are a valuable source of information which can be used to develop control algorithms or determine optimum locations and parameters for installation of lighting fixtures. The second way for improving the energy efficiency of the lighting systems is a use of the solar radiation energy converted to the electric power to supply lighting systems.


Author(s):  
A. F. E. Wise

Engineering services nowadays account for between 20 and 60 per cent of the cost of construction, and are a major factor in operating costs of buildings. They must be provided as economically as possible and in proper relation to the design of the building and the needs of the users. The paper explores this theme from two aspects (1) thermal conditions, and plant sizing in relation to building design and (2) standardization of services for specific building types. The general effects of structural mass and window design are first discussed briefly and it is shown how these factors affect the temperature within naturally ventilated buildings in summer. Nominally sealed buildings are then considered and the size of refrigeration plant required for an office is discussed in terms of similar factors and in relation to the design conditions. Such relationships should be taken into account during sketch plan design. The paper considers service cores in multi-storey buildings, where the plan of the building lends itself to a measure of standardization in the services. This theme is developed with particular reference to mechanical ventilation for the service cores in a 17-storey block of flats. Some details of this installation are given and used as a basis for discussing standardized services. Greater use of such systems, designed on a once-for-all basis and catalogued, would reduce the effort devoted year by year to similar design situations. The examples used are drawn from current work of the Building Research Station.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Van-Thoai Nguyen ◽  
Wei-Cheng Hung ◽  
Tsung-Chieh Cheng ◽  
Te-Hua Fang

Abstract An integrated desalination system with a combination of electrical heating by power supply and solar heating by Fresnel lens with the sun tracking system was investigated in this study. The experiments were carried out under the climatic conditions of Kaohsiung City (22 deg36′58″ N, 120 deg18′47″ E), Taiwan. With only solar heating by the Fresnel lens, the temperature of the seawater is strongly dependent on the position of the seawater tray and climatic conditions, and seawater evaporation is not stable. To maintain the uniform evaporation of seawater, an electrical heating plate was also used to provide energy for the desalination process. The results indicate that there are two desalination processes: evaporation on the surface of the seawater and boiling inside the seawater. The production of distilled water is greatly improved with this solar/electrical desalination system, especially at the boiling temperature. The results indicate that the energy efficiency and recovery efficiency of this desalination system increase rapidly as electrical power increases. In this study, the commercial energy efficiency of the system can reach 85%, and the recovery efficiency can approach 56.52%. Additionally, a higher annual productivity (6036 l) is obtained, and the cost per liter of distilled water is about 0.152 (US$/l).


Author(s):  
Yuriy Spirin ◽  
Vladimir Puntusov

In the Kaliningrad region there are about 70 % of all polder lands in Russia. On these lands with high potential fertility, it is advisable to intensive agriculture. The area for the average moisture year is an area with excessive moisture, which indicates the need to maintain the rate of drainage on agricultural land. Many different factors play a role in ensuring the drainage rate, one of which is pumping stations and pumping equipment installed on them. An important parameter in the use of pump-power equipment is energy consumption, since in this industry it is a considerable expense item. Improving the energy efficiency of pumping stations on polders is a pressing issue today. At the majority of polder pumping stations, domestic power pumping equipment is installed with excess power and head of 4–8 meters, and a new one is selected based on the maximum possible head in a given place. In the Kaliningrad region, the energy efficiency of polder pumping equipment has never been analyzed. In this paper, a statistical processing of the geodesic pressure of water at the polder pumping stations of the Slavsk region for 2000–2002 was carried out. On the basis of these data and data on the hydraulic characteristics of pressure pipelines, the calculated water pressures were determined for the rational selection of pumping equipment. The calculation of the economic efficiency of pumps with optimal power compared with pumps of excess capacity. The results of the study can serve as a justification for the transition to the pumping equipment with less power and pressure, which will lead to a decrease in the cost of money for electricity.


Author(s):  
Сергей Борисович Казаков ◽  
Дмитрий Михайлович Шишов ◽  
Антон Игоревич Ларин ◽  
Александр Петрович Николаев ◽  
Аза Валерьевна Писарева

В статье представлен обзор существующих технических решений в сфере мониторинга и предотвращения апноэ во сне. Произведён анализ существующих аппаратов для предотвращения апноэ, который показал, что на рынке присутствует большое количество импортных моделей, однако они имеют довольно высокую цену. Разработанный нами Российский аналог проектируемого аппарата, при схожих характеристиках, будет иметь более привлекательную цену, чем у импортных приборов. Интегрирование датчика влажности в персональную маску пациента даёт возможность отслеживать остановки дыхания пациента во время сна, и тем самым включать процесс принудительной подачи дыхательной смеси именно в тот момент, когда она необходима для устранения патологии. Целью научной работы является разработка конструкции прибора и создание алгоритма программы для управления аппарата искусственной вентиляции лёгких для предотвращения апноэ во сне. Показана разработка структуры устройства аппарата. Подобран компрессор и датчик влажности с обоснованными характеристиками для создания аппарата, а также основные элементы. Разработана конструкция корпуса аппарата и разработана компоновка. Выполнено технико-экономическое обоснование разработки аппаратно-программного комплекса для предотвращения апноэ во сне. Показано, что себестоимость готового изделия достаточно конкурентна The article presents an overview of existing technical solutions in the field of monitoring and prevention of sleep apnea. An analysis of existing devices for preventing apnea was made, which showed that there are a large number of imported models on the market, but they have a fairly high price. The Russian analog of the designed device developed by us, with similar characteristics, will have a more attractive price than that of imported devices. The integration of the humidity sensor into the patient's personal mask makes it possible to monitor the patient's breathing stops during sleep, and thus enable the process of forced delivery of the respiratory mixture at the exact moment when it is necessary to eliminate the pathology. The purpose of the research is to develop the device design and create a program algorithm for controlling the artificial lung ventilation device to prevent sleep apnea. The development of the device structure is shown. The compressor and humidity sensor with reasonable characteristics for creating the device, as well as the main elements are selected. The design of the device body and its layout were developed. A feasibility study for the development of a hardware and software system for preventing sleep apnea has been completed. It is shown that the cost of the finished product is quite competitive


2020 ◽  
Vol 67 (1) ◽  
pp. 28-34
Author(s):  
Aleksandr V. Vinogradov ◽  
Aleksey V. Bukreev

When repairing and replacing electrical wiring in enterprises, the main difficulty is the lack or poor quality of documentation, plans for conductors laying. Distinguishing wires (cables) and their cores by the color of the shells or using tags attached to the ends is difficult if the shells have the same color and there are no tags. Devices and technical solutions used to identify wires and cables do not allow recognizing conductors without breaking the electrical circuit, removing insulation, and de-energizing the network. Searching for the right conductor is a time-consuming operation. (Research purpose) The research purpose is developing a new microcontroller device for identifying wires using an acoustic signal. (Materials and methods) Literature sources has been searched for devices for conductors identifying. (Results and discussion) The article proposes a method that involves feeding an acoustic signal to a wire at one point and capturing it at another, in order to recognize the desired wire. The article presents results of comparison of the developed microcontroller device for identifying conductors using an acoustic signal with known devices and methods for conductors recognizing. (Conclusions) The article reveals the shortcomings of existing methods and means of identifying wires and cables. Authors performed a theoretical calculation of the sound pressure in the conductor at a given distance. The article presents the calculation of speed of acoustic waves in conductors with different types of insulation. Authors designed a microcontroller device for identifying conductors using an acoustic signal and tested it. It was determined that the device increases the safety of work, reduces the cost of operating internal wiring and identification time; eliminates the violation of wire insulation, the need to disable electrical receivers. The convergence of theoretical calculations and experimental data was shown.


2019 ◽  
Vol 290 ◽  
pp. 02007
Author(s):  
Radu Dan Paltan ◽  
Cristina Biriş ◽  
Loredana Anne-Marie Rădulescu

Of many techniques that are used to optimize production and costs, the studies conducted within a profile company lead to our choice for testing the 6Sigma method (the most used method in the automotive industry) in view of the economic efficiency applied in the wood Industry company. This method measures how many flaws exist in a process and determines in a systematic way how to improve it by technical overhauling and eliminating or minimizing the process for efficiency. This research article aims to study the state of research on the optimization of the production process through technical overhauling for panels reconstituted from solid wood and ways to make production more efficient by cutting costs through technical overhauling. From preliminary research, we estimate that all the items founded and others that will result from further research will result in a significant decrease in production costs that are reflected in the cost of the finished product and consequently in increasing the yield of the company by maximizing its profit. At the same time it may be the basis of future research studies in the field. The easier it is to maximize profits, the lower the operating costs are and the higher recovery rate of investments are, that will result a change in the operating mode: “working smarter not harder”.


2021 ◽  
Vol 1 ◽  
pp. 131-140
Author(s):  
Federica Cappelletti ◽  
Marta Rossi ◽  
Michele Germani ◽  
Mohammad Shadman Hanif

AbstractDe-manufacturing and re-manufacturing are fundamental technical solutions to efficiently recover value from post-use products. Disassembly in one of the most complex activities in de-manufacturing because i) the more manual it is the higher is its cost, ii) disassembly times are variable due to uncertainty of conditions of products reaching their EoL, and iii) because it is necessary to know which components to disassemble to balance the cost of disassembly. The paper proposes a methodology that finds ways of applications: it can be applied at the design stage to detect space for product design improvements, and it also represents a baseline from organizations approaching de-manufacturing for the first time. The methodology consists of four main steps, in which firstly targets components are identified, according to their environmental impact; secondly their disassembly sequence is qualitatively evaluated, and successively it is quantitatively determined via disassembly times, predicting also the status of the component at their End of Life. The aim of the methodology is reached at the fourth phase when alternative, eco-friendlier End of Life strategies are proposed, verified, and chosen.


Sign in / Sign up

Export Citation Format

Share Document