scholarly journals GEODETIC INFORMATION IN AUTOMATED SYSTEM OF TECHNICAL SUPPORT AND MAINTENANCE

Author(s):  
Nurgan T. Kemerbayev ◽  

Two years ago, at the Pavlodar oil chemistry refinery LLP, as part of the modernization of the production process, an automated system for maintenance and repair of equipment (PM) was introduced. This system, consisting of several subsystems, made it possible to monitor the workflow, monitor many production cycles, compile statistics on the performance of various production tasks, identify problematic zones, and also pre-predict the failure of a particular equipment, calculate problematic zones. However, the process of expanding the system of functional maintenance does not stand still. Currently, as part of the digitalization of the production process, the plant is implementing a project to create a 3D master plan for the plant. The article describes in detail the process of phased creation of a digital spatial model and its relationship with the automated control system for maintenance and repair of equipment. One of the main stages of creating a three-dimensional model is described in detail – the process of obtaining high-precision geodetic measurements to create a geodetic base, field work, and the creation of a plan-height justification. The methodology of laser scanning, the process of processing the obtained data, modeling and filling the digital model with attributive data is described. Today it is difficult to dispute the importance of introducing digital spatial modeling in production and the main role in the success of these innovative projects is played by correctly received, processed and implemented initial data in the model. Thus, geodetic support is a key step in the complex technological process of creating a digital spatial double or 3D model of the plant and its operation in the maintenance system.

2018 ◽  
Vol 35 ◽  
pp. 03002 ◽  
Author(s):  
Sławomir Porzucek ◽  
Monika Łój ◽  
Karolina Matwij ◽  
Wojciech Matwij

In the region of Siesławice (near Busko-Zdrój, Poland) there are unique phenomena of gypsum karst. Atmospheric factors caused numerous gypsum outcrops, canals and underground voids. The article presents the possibility of using non-invasive gravimetric surveys supplemented with geodetic measurements to illustrate karst changes occurring around the void. The use of modern geodetic measurement techniques including terrestrial and airborne laser scanning enables to generate a digital terrain model and a three-dimensional model of voids. Gravimetric field studies allowed to map the anomalies of the gravitational field of the near-surface zone. Geodetic measurement results have made it possible to accurately determine the terrain correction that supplemented the gravimetric anomaly information. Geophysical interpretation indicate the presence of weathered rocks in the near surface zone and fractures and loosened zones located surround the karst cave.


Spatium ◽  
2016 ◽  
pp. 30-36 ◽  
Author(s):  
Petar Pejic ◽  
Sonja Krasic

Digital three-dimensional models of the existing architectonic structures are created for the purpose of digitalization of the archive documents, presentation of buildings or an urban entity or for conducting various analyses and tests. Traditional methods for the creation of 3D models of the existing buildings assume manual measuring of their dimensions, using the photogrammetry method or laser scanning. Such approaches require considerable time spent in data acquisition or application of specific instruments and equipment. The goal of this paper is presentation of the procedure for the creation of 3D models of the existing structures using the globally available web resources and free software packages on standard PCs. This shortens the time of the production of a digital three-dimensional model of the structure considerably and excludes the physical presence at the location. In addition, precision of this method was tested and compared with the results acquired in a previous research.


2019 ◽  
Vol 8 (2) ◽  
pp. 53 ◽  
Author(s):  
Young Jo ◽  
Seonghyuk Hong

Three-dimensional digital technology is important in the maintenance and monitoring of cultural heritage sites. This study focuses on using a combination of terrestrial laser scanning and unmanned aerial vehicle (UAV) photogrammetry to establish a three-dimensional model and the associated digital documentation of the Magoksa Temple, Republic of Korea. Herein, terrestrial laser scanning and UAV photogrammetry was used to acquire the perpendicular geometry of the buildings and sites, where UAV photogrammetry yielded higher planar data acquisition rate in upper zones, such as the roof of a building, than terrestrial laser scanning. On comparing the two technologies’ accuracy based on their ground control points, laser scanning was observed to provide higher positional accuracy than photogrammetry. The overall discrepancy between the two technologies was found to be sufficient for the generation of convergent data. Thus, the terrestrial laser scanning and UAV photogrammetry data were aligned and merged post conversion into compatible extensions. A three-dimensional (3D) model, with planar and perpendicular geometries, based on the hybrid data-point cloud was developed. This study demonstrates the potential for using the integration of terrestrial laser scanning and UAV photogrammetry in 3D digital documentation and spatial analysis of cultural heritage sites.


2020 ◽  
Vol 119 (12) ◽  
pp. 4159-4168
Author(s):  
Runhui Zhang ◽  
Wanpeng Zheng ◽  
Arwid Daugschies ◽  
Berit Bangoura

AbstractMixed infections of Toxoplasma gondii and Eimeria tenella are likely to occur frequently due to the high prevalence of both pathogens in free-ranging chickens. In this study, we investigated the co-occurrence of the two parasites in the same immune-competent host cell towards altered patterns of parasite-host interactions. Chicken blood monocyte–derived macrophages were co-infected with T. gondii RH tachyzoites and E. tenella Houghton sporozoites in vitro for 24 h. Through monitoring the uptake of pH-sensitive pHrodo™ Zymosan BioParticles (“Zymosan”) by macrophages, we created a three-dimensional model and to analyze quantitatively phagocytosis using confocal laser scanning microscopy. Assessments of parasite populations were performed by qPCR at 2, 6, 12, and 24 h post-infection (hpi). At 6 hpi, phagocytosis was inhibited in the E. tenella–infected cultures while no inhibition of phagocytosis was observed due to T. gondii. Phagocytosis activity revealed more complex interactions during co-infection. At 12 and 24 hpi, phagocytosis response to “Zymosan” was distinctly weaker in co-infected cells than in all other groups except for cells mono-infected with high doses of E. tenella at 24 hpi. By qPCR, significantly reduced numbers of both intracellular parasites were recorded (10-fold) in all infected groups at 2 hpi. At 12 hpi, the T. gondii population reached lowest values but dramatically increased by 24 hpi. Our data confirm that macrophage phagocytosis is involved in the control of invasion by apicomplexan parasites in chicken which particularly applies to E. tenella infection and it was able to be altered by the co-existing parasites.


Author(s):  
Bin Xiao ◽  
Yuwen Zhang

A three-dimensional model describing melting and resolidification of direct metal laser sintering of loose powders on top of sintered layers with a moving Gaussian laser beam is developed. Natural convection in the liquid pool driven by buoyancy and Marangoni effects is taken into account. A temperature transforming model is employed to model melting and resolidification in the laser sintering process. The continuity, momentum, and energy equations are solved using a finite volume method. The effects of dominant processing parameters including number of the existing sintered layers underneath, laser scanning velocity, and initial porosity on the sintering process are investigated.


Author(s):  
D J Weir ◽  
M J Milroy ◽  
C Bradley ◽  
G W Vickers

Reverse engineering involves digitizing a three-dimensional model or part, by means of a tactile or non-contact optical sensor, converting the data to a CAD (computer aided design) database description and manufacturing by CNC (computer numerical controlled) machines. This paper demonstrates an effective approach to the reverse engineering of physical models by employing a three-dimensional laser scanning system in conjunction with surface-fitting software developed by the authors. Accurate surface data are collected by the laser scanner and then input to the surface-fitting software. Surface entities such as B-spline and quadric functions are employed to build the CAD model. The CAD model is compatible with popular design and manufacturing software packages. A telephone receiver is used to illustrate the efficiency of the process.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kamel Ettaieb ◽  
Sylvain Lavernhe ◽  
Christophe Tournier

Purpose This paper aims to propose an analytical thermal three-dimensional model that allows an efficient evaluation of the thermal effect of the laser-scanning path. During manufacturing by laser powder bed fusion (LPBF), the laser-scanning path influences the thermo-mechanical behavior of parts. Therefore, it is necessary to validate the path generation considering the thermal behavior induced by this process to improve the quality of parts. Design/methodology/approach The proposed model, based on the effect of successive thermal flashes along the scanning path, is calibrated and validated by comparison with thermal results obtained by FEM software and experimental measurements. A numerical investigation is performed to compare different scanning path strategies on the Ti6Al4V material with different stimulation parameters. Findings The simulation results confirm the effectiveness of the approach to simulate the thermal field to validate the scanning strategy. It suggests a change in the scale of simulation thanks to high-performance computing resources. Originality/value The flash-based approach is designed to ensure the quality of the simulated thermal field while minimizing the computational cost.


2015 ◽  
Vol 5 (4) ◽  
pp. 114-122
Author(s):  
Стариков ◽  
Aleksandr Starikov ◽  
Батурин ◽  
Kirill Baturin

Now for the decision of tasks of monitoring and evaluation of forest plantations the use of methods and means of laser scanning is one of the most act-sexual and priorities. Laser scanning can be performed independently, or in combination with digital aerial and space photos and video, and can also be carried out ground research on the sample areas. A number of indicators laser scanning is superior to other, currently known, remote evaluation methods qualitative and quantitative characteristics of the forest Fund Laser scanning of forest cover based on the use of modern tech-nologies of digital photogrammetry and geoinformation systems, as well as methods of digital processing and multidimensional modeling of the reflected signals. The article provides analysis of modern methods and means of aerial and terrestrial laser scanning of forest stands. The use of air-borne laser scanning will allow achieving high precision in the determination of basic inventory pa-rameters that are comparable to land-based taxation. Main advantages of laser ranging to other me-thods of monitoring of forest plantations is that the laser beam is able to penetrate the forest canopy, thereby scanning all the tiers of the stand. High density scanning (5-10 points per 1 m2) allows ob-taining three-dimensional images of individual trees with high accuracy. The obtained three-dimensional model requires no processing, unlike aerospace methods of remote sensing that are as-sociated with long and arduous races-encryption of the images. Terrestrial laser scanning, in fact, similar to traditional photogrammetric methods, but it allows you to get the coordinates from one point of standing with the possibility of control measurements directly in the field, while providing higher measurement accuracy, compared with photogrammetric methods.


2015 ◽  
Vol 75 (10) ◽  
Author(s):  
Ainun Nadzirah Abdul Raof ◽  
Halim Setan ◽  
Abert Chong ◽  
Zulkepli Majid

This article describes the work of archaeological artifact data recording using close range photogrammetry method. A calibrated stereo camera was used to take the stereo images of the artifacts. Photomodeler Scanner software was used to process the stereo images to produce a three-dimensional model of the artifact. For verification purposes, VIVID 910 laser scanner was used to generate three-dimensional model of the same artifact. The study found that close range photogrammetry method is easy to use, with fast data recording, fast data processing and it is a method which is cheaper than the laser scanning method.


2014 ◽  
Vol 1079-1080 ◽  
pp. 926-929
Author(s):  
Dan Han ◽  
Qian Wang ◽  
Bing Huan Li ◽  
Guo Jun Zhang ◽  
Shuo Wang

Intake port is an important part of the gasoline engine, its structure will influence the gas flow characteristics which directly affects the performance of the engine [1]. In this paper, three-dimensional CFD calculation and structural optimization were used to research the performance of gasoline engine. Firstly, the method of laser scanning and UG software were used to reverse modeling engine exhaust port and get the three-dimensional model. Secondly, after setting boundary conditions and turbulence models, the air flowing through the intake ports were simulated by FLUENT software respectively. Finally, based on numerical methods, the pressure field, velocity field were shown. The results of the simulation of flow field characteristics analysis show that the simulation and experimental results are in good agreement.


Sign in / Sign up

Export Citation Format

Share Document