scholarly journals Social Integrating Robots Suggest Mitigation Strategies for Ecosystem Decay

Author(s):  
Thomas Schmickl ◽  
Martina Szopek ◽  
Francesco Mondada ◽  
Rob Mills ◽  
Martin Stefanec ◽  
...  

We develop here a novel hypothesis that may generate a general research framework of how autonomous robots may act as a future contingency to counteract the ongoing ecological mass extinction process. We showcase several research projects that have undertaken first steps to generate the required prerequisites for such a technology-based conservation biology approach. Our main idea is to stabilise and support broken ecosystems by introducing artificial members, robots, that are able to blend into the ecosystem’s regulatory feedback loops and can modulate natural organisms’ local densities through participation in those feedback loops. These robots are able to inject information that can be gathered using technology and to help the system in processing available information with technology. In order to understand the key principles of how these robots are capable of modulating the behaviour of large populations of living organisms based on interacting with just a few individuals, we develop novel mathematical models that focus on important behavioural feedback loops. These loops produce relevant group-level effects, allowing for robotic modulation of collective decision making in social organisms. A general understanding of such systems through mathematical models is necessary for designing future organism-interacting robots in an informed and structured way, which maximises the desired output from a minimum of intervention. Such models also help to unveil the commonalities and specificities of the individual implementations and allow predicting the outcomes of microscopic behavioural mechanisms on the ultimate macroscopic-level effects. We found that very similar models of interaction can be successfully used in multiple very different organism groups and behaviour types (honeybee aggregation, fish shoaling, and plant growth). Here we also report experimental data from biohybrid systems of robots and living organisms. Our mathematical models serve as building blocks for a deep understanding of these biohybrid systems. Only if the effects of autonomous robots onto the environment can be sufficiently well predicted can such robotic systems leave the safe space of the lab and can be applied in the wild to be able to unfold their ecosystem-stabilising potential.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ling Xin ◽  
Xiaoyang Duan ◽  
Na Liu

AbstractIn living organisms, proteins are organized prevalently through a self-association mechanism to form dimers and oligomers, which often confer new functions at the intermolecular interfaces. Despite the progress on DNA-assembled artificial systems, endeavors have been largely paid to achieve monomeric nanostructures that mimic motor proteins for a single type of motion. Here, we demonstrate a DNA-assembled building block with rotary and walking modules, which can introduce new motion through dimerization and oligomerization. The building block is a chiral system, comprising two interacting gold nanorods to perform rotation and walking, respectively. Through dimerization, two building blocks can form a dimer to yield coordinated sliding. Further oligomerization leads to higher-order structures, containing alternating rotation and sliding dimer interfaces to impose structural twisting. Our hierarchical assembly scheme offers a design blueprint to construct DNA-assembled advanced architectures with high degrees of freedom to tailor the optical responses and regulate multi-motion on the nanoscale.


2015 ◽  
Vol 112 (27) ◽  
pp. 8187-8192 ◽  
Author(s):  
Michael D. Hardy ◽  
Jun Yang ◽  
Jangir Selimkhanov ◽  
Christian M. Cole ◽  
Lev S. Tsimring ◽  
...  

Cell membranes are dynamic structures found in all living organisms. There have been numerous constructs that model phospholipid membranes. However, unlike natural membranes, these biomimetic systems cannot sustain growth owing to an inability to replenish phospholipid-synthesizing catalysts. Here we report on the design and synthesis of artificial membranes embedded with synthetic, self-reproducing catalysts capable of perpetuating phospholipid bilayer formation. Replacing the complex biochemical pathways used in nature with an autocatalyst that also drives lipid synthesis leads to the continual formation of triazole phospholipids and membrane-bound oligotriazole catalysts from simpler starting materials. In addition to continual phospholipid synthesis and vesicle growth, the synthetic membranes are capable of remodeling their physical composition in response to changes in the environment by preferentially incorporating specific precursors. These results demonstrate that complex membranes capable of indefinite self-synthesis can emerge when supplied with simpler chemical building blocks.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Aleksey E. Kuznetsov

Abstract Various (metallo)porphyrins and related compounds have been intensively investigated by different research groups due to their extremely important role in living organisms along with their versatile applications in technology. The design of novel porphyrinoids by core-modification, or substitution of pyrrole nitrogens, with the elements of other groups of the Periodic Table has been considered as a highly promising methodology for tuning structures and properties of porphyrinoids and thus opening new possible applications for them. Much effort has been given to the modifications of the porphyrin core with elements of the main groups, namely O, S, Se (chalcogens), and the heavier congener of nitrogen, phosphorus. In general, the porphyrin core modification by replacing nitrogens with heteroatoms is a promising and effective strategy for obtaining new compounds with unusual structures and properties (optical, electrochemical, coordinating, etc.) as well as reactivity. These novel molecules can also be employed as promising building or construction blocks in various applications in the nanotechnology area.


2007 ◽  
Vol 6 (4) ◽  
pp. 267-271 ◽  
Author(s):  
Avnish Kumar Arora ◽  
Varsha Tomar ◽  
Aarti ◽  
K.T. Venkateswararao ◽  
Kamaluddin

AbstractRecent findings on the presence of water on Mars (Baker, V.R. (2006). Geomorphological evidence for water on Mars. Elements2(3), 139–143; DeJong, E. (2006). Geological evidence of the presence of water on Mars. Abstracts from the 40th Western Regional Meeting of the American Chemical Society, Anaheim, CA, January, 2006, pp. 22–25. American Chemical Society, Washington, DC; McSween, H.Y. Jr. (2006). Water on Mars. Elements2(3), 135–137; Mitrofanov, I.G. (2005). Water explorations on Mars. Priroda9, 34–43) strongly suggest that there existed a period of chemical evolution eventually leading to life processes on primitive Mars (Kanavarioti, A. & Maneinelli, R.L. (1990). Could organic matter have been preserved on Mars for 3.5 billion years. Icarus84, 196–202). Owing to the adverse conditions, it is quite likely that the process of chemical evolution would have been suppressed and any living organisms that formed would have become extinct over time on Mars. The presence of water as a necessity for the survival of living organisms and the presence of grey haematite, originated under aqueous conditions, have led us to investigate the possible role of haematite in the chemical evolution on Mars. Our observations suggest that iron oxide hydroxide (FeOOH), a precursor of haematite, has a much higher binding affinity towards ribose nucleotides (the building blocks of RNA) than the haematite itself. This would mean that during the process of haematite formation, especially through the probable process of Fe3+ hydrolysis by aqueous ammonia, the precursors of haematite might have played a significant role in the processes leading to chemical evolution and the possible origin of life on Mars.


2021 ◽  
Author(s):  
◽  
Alexis Garland

<p>A prominent psychological theory on early cognitive development is Spelke’s Core Knowledge (CK) hypothesis (Spelke, Breinlinger, Macomber, & Jacobson, 1992), which posits that human infants, and possibly other species, are guided by innate understandings of how object movements, classification and quantification are governed by physical laws and, further, how agents are capable of perceptions and purposive action. CK is a set of cognitive building blocks, which serve as the foundation for more complex cognition such as acquisition and use of symbol systems pertaining to language and mathematics (Spelke, 2000). Evidence points to four core systems of knowledge: representation of number, object, space (or geometry) and agency. Investigation of spontaneous CK in nonhuman species in the wild is fundamental to understanding the ecological validity and evolutionary context for a set of systems that is proposed to be universally embedded. The bold, inquisitive manner, naïve fearlessness and unique insect caching behaviour of wild North Island robins (Petroica longipes) presents a unique opportunity to identify and characterise CK in a new model system. Six studies were conducted with the aim of investigating core developmental cognition in robins. The first three studies focused on perception of numerical quantity. Study 1 investigated the ability to discriminate between both large and small quantities, finding that robins successfully discriminate between unusually large quantities independent of ratio. Study 2 explored quantity discrimination in which summation of items is spatially distributed across an array, and found that while robins perform successfully with small numbers, the task presented substantially more cognitive demand. Study 3 measured robins’ reactions to computation by presenting simple addition and subtraction problems in a Violation of Expectancy (VoE) paradigm, finding that robins search longer when presented with a mathematically incongruent scenario. The last three studies focused on perception of agency. Study 4 investigated robins’ response to gaze direction in humans in a competitive paradigm, and found that they were sensitive to human gaze direction in all conditions but one. Study 5 explored perception of physical capability in humans, and results indicated that limb visibility significantly influences pilfering choice. Study 6 examined robins’ perception of animacy in prey, finding that in a VoE paradigm, robins’ expectation of hidden prey continuity varies depending on mobility and animacy. Taken together, the results of these six studies suggest that while supportive of fundamental characteristics defining basic Core Knowledge in many ways, some unique results in the cognitive abilities of this biologically naïve species shed new light on our growing understanding of the shared basis of cognition. A deeper look at avian performance in core developmental tasks, especially in a naïve wild population, can offer new insights into sweeping evolutionary theories that underpin basic cognitive mechanisms.</p>


Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Jie Jiang ◽  
Tao Xu ◽  
Junpeng Lu ◽  
Litao Sun ◽  
Zhenhua Ni

Two-dimensional (2D) materials have attracted increasing interests in the last decade. The ultrathin feature of 2D materials makes them promising building blocks for next-generation electronic and optoelectronic devices. With reducing dimensionality from 3D to 2D, the inevitable defects will play more important roles in determining the properties of materials. In order to maximize the functionality of 2D materials, deep understanding and precise manipulation of the defects are indispensable. In the recent years, increasing research efforts have been made on the observation, understanding, manipulation, and control of defects in 2D materials. Here, we summarize the recent research progress of defect engineering on 2D materials. The defect engineering triggered by electron beam (e-beam), plasma, chemical treatment, and so forth is comprehensively reviewed. Firstly, e-beam irradiation-induced defect evolution, structural transformation, and novel structure fabrication are introduced. With the assistance of a high-resolution electron microscope, the dynamics of defect engineering can be visualized in situ. Subsequently, defect engineering employed to improve the performance of 2D devices by means of other methods of plasma, chemical, and ozone treatments is reviewed. At last, the challenges and opportunities of defect engineering on promoting the development of 2D materials are discussed. Through this review, we aim to build a correlation between defects and properties of 2D materials to support the design and optimization of high-performance electronic and optoelectronic devices.


2021 ◽  
Vol 22 (17) ◽  
pp. 9634
Author(s):  
Moran Aviv ◽  
Dana Cohen-Gerassi ◽  
Asuka A. Orr ◽  
Rajkumar Misra ◽  
Zohar A. Arnon ◽  
...  

Supramolecular hydrogels formed by the self-assembly of amino-acid based gelators are receiving increasing attention from the fields of biomedicine and material science. Self-assembled systems exhibit well-ordered functional architectures and unique physicochemical properties. However, the control over the kinetics and mechanical properties of the end-products remains puzzling. A minimal alteration of the chemical environment could cause a significant impact. In this context, we report the effects of modifying the position of a single atom on the properties and kinetics of the self-assembly process. A combination of experimental and computational methods, used to investigate double-fluorinated Fmoc-Phe derivatives, Fmoc-3,4F-Phe and Fmoc-3,5F-Phe, reveals the unique effects of modifying the position of a single fluorine on the self-assembly process, and the physical properties of the product. The presence of significant physical and morphological differences between the two derivatives was verified by molecular-dynamics simulations. Analysis of the spontaneous phase-transition of both building blocks, as well as crystal X-ray diffraction to determine the molecular structure of Fmoc-3,4F-Phe, are in good agreement with known changes in the Phe fluorination pattern and highlight the effect of a single atom position on the self-assembly process. These findings prove that fluorination is an effective strategy to influence supramolecular organization on the nanoscale. Moreover, we believe that a deep understanding of the self-assembly process may provide fundamental insights that will facilitate the development of optimal amino-acid-based low-molecular-weight hydrogelators for a wide range of applications.


Author(s):  
Wendy Wheeler

Since the publication of Claude Shannon’s groundbreaking paper, “A Mathematical Theory of Communication,” in two parts in the Bell Laboratory journal in 1948, understanding and research concerning communication and information has received a technicized treatment. As biosemiotics has been at the forefront in arguing, all living organisms communicate, but they do not do so in the digital mode used in information technology (IT) engineering. Life communicates in inherited, evolutionary ways that are traceable from single cells all the way to complex humans. What IT engineers call “redundancy” those studying living organisms call “meaning.” The trade between individual organisms and their environment takes place in the circulation, interpretation, and feedback loops of semiosis. In this way, organisms are able to maintain the features of adaptive, creative, and evolutionary learning systems by modeling their worlds in open, receptive fashion via the use of iconic and indexical signs. In other words, organisms make use of natural, then cultural metaphors and metonyms.


2000 ◽  
Vol 23 (5) ◽  
pp. 727-741 ◽  
Author(s):  
Peter M. Todd ◽  
Gerd Gigerenzer

How can anyone be rational in a world where knowledge is limited, time is pressing, and deep thought is often an unattainable luxury? Traditional models of unbounded rationality and optimization in cognitive science, economics, and animal behavior have tended to view decision-makers as possessing supernatural powers of reason, limitless knowledge, and endless time. But understanding decisions in the real world requires a more psychologically plausible notion of bounded rationality. In Simple heuristics that make us smart (Gigerenzer et al. 1999), we explore fast and frugal heuristics – simple rules in the mind's adaptive toolbox for making decisions with realistic mental resources. These heuristics can enable both living organisms and artificial systems to make smart choices quickly and with a minimum of information by exploiting the way that information is structured in particular environments. In this précis, we show how simple building blocks that control information search, stop search, and make decisions can be put together to form classes of heuristics, including: ignorance-based and one-reason decision making for choice, elimination models for categorization, and satisficing heuristics for sequential search. These simple heuristics perform comparably to more complex algorithms, particularly when generalizing to new data – that is, simplicity leads to robustness. We present evidence regarding when people use simple heuristics and describe the challenges to be addressed by this research program.


2011 ◽  
Vol 58 (2) ◽  
Author(s):  
Hieronim Jakubowski

All living organisms conduct protein synthesis with a high degree of accuracy maintained in the transmission and flow of information from a gene to protein product. One crucial 'quality control' point in maintaining a high level of accuracy is the selectivity by which aminoacyl-tRNA synthetases furnish correctly activated amino acids, attached to tRNA species, as the building blocks for growing protein chains. When differences in binding energies of amino acids to an aminoacyl-tRNA synthetase are inadequate, editing is used as a major determinant of enzyme selectivity. Some incorrect amino acids are edited at the active site before the transfer to tRNA (pre-transfer editing), while others are edited after transfer to tRNA at a separate editing site (post-transfer editing). Access of natural non-protein amino acids, such as homocysteine, homoserine, or ornithine to the genetic code is prevented by the editing function of aminoacyl-tRNA synthetases. Disabling editing function leads to tRNA mischarging errors and incorporation of incorrect amino acids into protein, which is detrimental to cell homeostasis and inhibits growth. Continuous homocysteine editing by methionyl-tRNA synthetase, resulting in the synthesis of homocysteine thiolactone, is part of the process of tRNA aminoacylation in living organisms, from bacteria to man. Excessive homocysteine thiolactone synthesis in hyperhomocysteinemia caused by genetic or nutritional deficiencies is linked to human vascular and neurological diseases.


Sign in / Sign up

Export Citation Format

Share Document