scholarly journals Erythroid Differentiation and Heme Biosynthesis Are Dependent on a Shift in the Balance of Mitochondrial Fusion and Fission Dynamics

Author(s):  
Alvaro M. Gonzalez-Ibanez ◽  
Lina M. Ruiz ◽  
Erik Jensen ◽  
Cesar A. Echeverria ◽  
Valentina Romero ◽  
...  

Erythropoiesis is the most robust cellular differentiation and proliferation system, with a production of ∼2 × 1011 cells per day. In this fine-tuned process, the hematopoietic stem cells (HSCs) generate erythroid progenitors, which proliferate and mature into erythrocytes. During erythropoiesis, mitochondria are reprogrammed to drive the differentiation process before finally being eliminated by mitophagy. In erythropoiesis, mitochondrial dynamics (MtDy) are expected to be a key regulatory point that has not been described previously. We described that a specific MtDy pattern occurs in human erythropoiesis from EPO-induced human CD34+ cells, characterized predominantly by mitochondrial fusion at early stages followed by fission at late stages. The fusion protein MFN1 and the fission protein FIS1 are shown to play a key role in the progression of erythropoiesis. Fragmentation of the mitochondrial web by the overexpression of FIS1 (gain of fission) resulted in both the inhibition of hemoglobin biosynthesis and the arrest of erythroid differentiation, keeping cells in immature differentiation stages. These cells showed specific mitochondrial features as compared with control cells, such as an increase in round and large mitochondrial morphology, low mitochondrial membrane potential, a drop in the expression of the respiratory complexes II and IV and increased ROS. Interestingly, treatment with the mitochondrial permeability transition pore (mPTP) inhibitor, cyclosporin A, rescued mitochondrial morphology, hemoglobin biosynthesis and erythropoiesis. Studies presented in this work reveal MtDy as a hot spot in the control of erythroid differentiation, which might signal downstream for metabolic reprogramming through regulation of the mPTP.

Author(s):  
Alvaro M. Gonzalez-Ibanez ◽  
Lina M. Ruiz ◽  
Erik Jensen ◽  
Cesar A. Echeverria ◽  
Valentina Romero ◽  
...  

AbstractErythropoiesis is the most powerful cellular differentiation and proliferation system, with a production of 1011 cells per day. In this fine-tuned process, the hematopoietic stem cells (HSCs) generate erythroid progenitors, which proliferate and mature into erythrocytes. During erythropoiesis, mitochondria are reprogrammed to drive the differentiation process before finally being eliminated by mitophagy. In erythropoiesis, mitochondrial dynamics (MtDy) is expected to be a regulatory key point that has not been described previously. We described that a specific MtDy pattern is occurring in human erythropoiesis from EPO-induced human CD34+ cells, characterized by a predominant mitochondrial fusion at early stages followed by predominant fission at late stages. The fusion protein MFN1 and the fission protein FIS1 are shown to play a key role in the accurate progression of erythropoiesis. Fragmentation of the mitochondrial web by the overexpression of FIS1 (gain of fission) resulted in both the inhibition of hemoglobin biosynthesis and the arrest of erythroid differentiation, keeping cells in immature differentiation stages. These cells showed specific mitochondrial features as compared with control cells, such as an increase in round and large mitochondria morphology, low mitochondrial membrane potential and a drop in the expression of the respiratory complexes II and IV. Interestingly, treatment with the mitochondrial permeability transition pore (mPTP) inhibitor cyclosporin A, rescued mitochondrial morphology, hemoglobin biosynthesis and erythropoiesis. Studies presented in this work revealed MtDy as a hot spot in the regulation of erythroid differentiation which might be signaling downstream for metabolic reprogramming through the aperture/close of the mPTP.Key Points-. Excessive fission disrupts erythroid progression, heme biosynthesis and mitochondrial function, keeping cells mostly in progenitors and proerythroblast stage.-. Mitochondrial Dynamics signaling for erythroid differentiation involves FIS1 and the mPTP


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jianli He ◽  
Xun Shangguan ◽  
Wei Zhou ◽  
Ying Cao ◽  
Quan Zheng ◽  
...  

AbstractMetabolic programming and mitochondrial dynamics along with T cell differentiation affect T cell fate and memory development; however, how to control metabolic reprogramming and mitochondrial dynamics in T cell memory development is unclear. Here, we provide evidence that the SUMO protease SENP1 promotes T cell memory development via Sirt3 deSUMOylation. SENP1-Sirt3 signalling augments the deacetylase activity of Sirt3, promoting both OXPHOS and mitochondrial fusion. Mechanistically, SENP1 activates Sirt3 deacetylase activity in T cell mitochondria, leading to reduction of the acetylation of mitochondrial metalloprotease YME1L1. Consequently, deacetylation of YME1L1 suppresses its activity on OPA1 cleavage to facilitate mitochondrial fusion, which results in T cell survival and promotes T cell memory development. We also show that the glycolytic intermediate fructose-1,6-bisphosphate (FBP) as a negative regulator suppresses AMPK-mediated activation of the SENP1-Sirt3 axis and reduces memory development. Moreover, glucose limitation reduces FBP production and activates AMPK during T cell memory development. These data show that glucose limitation activates AMPK and the subsequent SENP1-Sirt3 signalling for T cell memory development.


2021 ◽  
Vol 22 (9) ◽  
pp. 4617
Author(s):  
Styliana Kyriakoudi ◽  
Anthi Drousiotou ◽  
Petros P. Petrou

Mitochondria are dynamic organelles, the morphology of which is tightly linked to their functions. The interplay between the coordinated events of fusion and fission that are collectively described as mitochondrial dynamics regulates mitochondrial morphology and adjusts mitochondrial function. Over the last few years, accruing evidence established a connection between dysregulated mitochondrial dynamics and disease development and progression. Defects in key components of the machinery mediating mitochondrial fusion and fission have been linked to a wide range of pathological conditions, such as insulin resistance and obesity, neurodegenerative diseases and cancer. Here, we provide an update on the molecular mechanisms promoting mitochondrial fusion and fission in mammals and discuss the emerging association of disturbed mitochondrial dynamics with human disease.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Jarmon G. Lees ◽  
Anne M. Kong ◽  
Yi C. Chen ◽  
Priyadharshini Sivakumaran ◽  
Damián Hernández ◽  
...  

Human induced pluripotent stem cells (iPSCs) can be differentiated in vitro into bona fide cardiomyocytes for disease modelling and personalized medicine. Mitochondrial morphology and metabolism change dramatically as iPSCs differentiate into mesodermal cardiac lineages. Inhibiting mitochondrial fission has been shown to promote cardiac differentiation of iPSCs. However, the effect of hydrazone M1, a small molecule that promotes mitochondrial fusion, on cardiac mesodermal commitment of human iPSCs is unknown. Here, we demonstrate that treatment with M1 promoted mitochondrial fusion in human iPSCs. Treatment of iPSCs with M1 during embryoid body formation significantly increased the percentage of beating embryoid bodies and expression of cardiac-specific genes. The pro-fusion and pro-cardiogenic effects of M1 were not associated with changes in expression of the α and β subunits of adenosine triphosphate (ATP) synthase. Our findings demonstrate for the first time that hydrazone M1 is capable of promoting cardiac differentiation of human iPSCs, highlighting the important role of mitochondrial dynamics in cardiac mesoderm lineage specification and cardiac development. M1 and other mitochondrial fusion promoters emerge as promising molecular targets to generate lineages of the heart from human iPSCs for patient-specific regenerative medicine.


Blood ◽  
2020 ◽  
Vol 136 (2) ◽  
pp. 235-246 ◽  
Author(s):  
Yuanting Chen ◽  
Jie Xiang ◽  
Fenghua Qian ◽  
Bastihalli T. Diwakar ◽  
Baiye Ruan ◽  
...  

Abstract Anemic stress induces stress erythropoiesis, which rapidly generates new erythrocytes to restore tissue oxygenation. Stress erythropoiesis is best understood in mice where it is extramedullary and occurs primarily in the spleen. However, both human and mouse stress erythropoiesis use signals and progenitor cells that are distinct from steady-state erythropoiesis. Immature stress erythroid progenitors (SEPs) are derived from short-term hematopoietic stem cells. Although the SEPs are capable of self-renewal, they are erythroid restricted. Inflammation and anemic stress induce the rapid proliferation of SEPs, but they do not differentiate until serum erythropoietin (Epo) levels increase. Here we show that rather than directly regulating SEPs, Epo promotes this transition from proliferation to differentiation by acting on macrophages in the splenic niche. During the proliferative stage, macrophages produce canonical Wnt ligands that promote proliferation and inhibit differentiation. Epo/Stat5-dependent signaling induces the production of bioactive lipid mediators in macrophages. Increased production of prostaglandin J2 (PGJ2) activates peroxisome proliferator-activated receptor γ (PPARγ)-dependent repression of Wnt expression, whereas increased production of prostaglandin E2 (PGE2) promotes the differentiation of SEPs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Taha Sen ◽  
Jun Chen ◽  
Sofie Singbrant

AbstractProduction of red blood cells relies on proper mitochondrial function, both for their increased energy demands during differentiation and for proper heme and iron homeostasis. Mutations in genes regulating mitochondrial function have been reported in patients with anemia, yet their pathophysiological role often remains unclear. PGC1β is a critical coactivator of mitochondrial biogenesis, with increased expression during terminal erythroid differentiation. The role of PGC1β has however mainly been studied in skeletal muscle, adipose and hepatic tissues, and its function in erythropoiesis remains largely unknown. Here we show that perturbed PGC1β expression in human hematopoietic stem/progenitor cells from both bone marrow and cord blood results in impaired formation of early erythroid progenitors and delayed terminal erythroid differentiation in vitro, with accumulations of polychromatic erythroblasts, similar to MDS-related refractory anemia. Reduced levels of PGC1β resulted in deregulated expression of iron, heme and globin related genes in polychromatic erythroblasts, and reduced hemoglobin content in the more mature bone marrow derived reticulocytes. Furthermore, PGC1β knock-down resulted in disturbed cell cycle exit with accumulation of erythroblasts in S-phase and enhanced expression of G1-S regulating genes, with smaller reticulocytes as a result. Taken together, we demonstrate that PGC1β is directly involved in production of hemoglobin and regulation of G1-S transition and is ultimately required for proper terminal erythroid differentiation.


2004 ◽  
Vol 164 (4) ◽  
pp. 493-499 ◽  
Author(s):  
Mariusz Karbowski ◽  
Damien Arnoult ◽  
Hsiuchen Chen ◽  
David C. Chan ◽  
Carolyn L. Smith ◽  
...  

A dynamic balance of organelle fusion and fission regulates mitochondrial morphology. During apoptosis this balance is altered, leading to an extensive fragmentation of the mitochondria. Here, we describe a novel assay of mitochondrial dynamics based on confocal imaging of cells expressing a mitochondrial matrix–targeted photoactivable green fluorescent protein that enables detection and quantification of organelle fusion in living cells. Using this assay, we visualize and quantitate mitochondrial fusion rates in healthy and apoptotic cells. During apoptosis, mitochondrial fusion is blocked independently of caspase activation. The block in mitochondrial fusion occurs within the same time range as Bax coalescence on the mitochondria and outer mitochondrial membrane permeabilization, and it may be a consequence of Bax/Bak activation during apoptosis.


2021 ◽  
Author(s):  
Dnyanesh Dubal ◽  
Prachiti Moghe ◽  
Bhavin Uttekar ◽  
Richa Rikhy

Optimal mitochondrial function determined by mitochondrial dynamics, morphology and activity is coupled to stem cell differentiation and organism development. However, the mechanisms of interaction of signaling pathways with mitochondrial morphology and activity are not completely understood. We assessed the role of mitochondrial fusion and fission in differentiation of neural stem cells called neuroblasts (NB) in the Drosophila brain. Depletion of mitochondrial inner membrane fusion protein Opa1 and mitochondrial outer membrane protein Marf in the Drosophila type II neuroblast lineage led to mitochondrial fragmentation and loss of activity. Opa1 and Marf depletion did not affect the numbers and polarity of type II neuroblasts but led to a decrease in proliferation and differentiation of cells in the lineage. On the contrary, loss of mitochondrial fission protein Drp1 led to mitochondrial fusion but did not show defects in proliferation and differentiation. Depletion of Drp1 along with Opa1 or Marf also led to mitochondrial fusion and suppressed fragmentation, loss of mitochondrial activity, proliferation and differentiation in the type II NB lineage. We found that Notch signaling depletion via the canonical pathway showed mitochondrial fragmentation and loss of differentiation similar to Opa1 mutants. An increase in Notch signaling required mitochondrial fusion for NB proliferation. Further, Drp1 mutants in combination with Notch depletion showed mitochondrial fusion and drove differentiation in the lineage suggesting that fused mitochondria can influence Notch signaling driven differentiation in the type II NB lineage. Our results implicate a crosstalk between Notch signalling, mitochondrial activity and mitochondrial fusion as an essential step in type II NB differentiation.


Author(s):  
A. S. Voytehovich ◽  
E. V. Vasina ◽  
V. S. Kastsiunina ◽  
I. N. Seviaryn ◽  
N. V. Petyovka

The objective is to study the effect of umbilical cord blood endothelial cells on the hematopoietic cells growth and the maturation in the erythroid direction in co-culture, as well as the expression of adult and fetal hemoglobin genes during erythroid differentiation under the conditions of vascular niche modeling in vitro. We used the following research methods: cultural, flow cytometry, real-time PCR and morphological analysis. We have developed the method of hematopoietic cord blood stem cells erythroid differentiation in co-culture using cord blood endothelial cell progenitors. CD34+CD31+CD144+CD105+CD90–CD45– progenitors of endothelial cells stimulate the erythroid differentiation of hematopoietic CD34+ cord blood cells and the growth of erythroid progenitors in co-culture from the 4th to 11th day in the presence of the stem cell factor, the erythropoietin and the fibroblast growth factor-2. The in vitro modeling of the vascular niche increases the mature CD36–CD235a+ erythroid cells 2.5 times higher than those in the liquid culture. The microenvironment of endothelial cells does not affect the level and expression ratio of fetal and adult hemoglobin during the erythroid differentiation in vitro.


2019 ◽  
Vol 115 (13) ◽  
pp. 1873-1885 ◽  
Author(s):  
Genki Naruse ◽  
Hiromitsu Kanamori ◽  
Akihiro Yoshida ◽  
Shingo Minatoguchi ◽  
Tomonori Kawaguchi ◽  
...  

Abstract Aims Glucagon-like peptide-1 (GLP-1) is a neuroendocrine hormone secreted by the intestine. Its receptor (GLP-1R) is expressed in various organs, including the heart. However, the dynamics and function of the GLP-1 signal in heart failure remains unclear. We investigated the impact of the cardio-intestinal association on hypertensive heart failure using miglitol, an α-glucosidase inhibitor known to stimulate intestinal GLP-1 production. Methods and results Dahl salt-sensitive (DS) rats fed a high-salt diet were assigned to miglitol, exendin (9-39) (GLP-1R blocker) and untreated control groups and treated for 11 weeks. Control DS rats showed marked hypertension and cardiac dysfunction with left ventricular dilatation accompanied by elevated plasma GLP-1 levels and increased cardiac GLP-1R expression as compared with age-matched Dahl salt-resistant (DR) rats. Miglitol further increased plasma GLP-1 levels, suppressed adverse cardiac remodelling, and mitigated cardiac dysfunction. In cardiomyocytes from miglitol-treated DS hearts, mitochondrial size was significantly larger with denser cristae than in cardiomyocytes from control DS hearts. The change in mitochondrial morphology reflected enhanced mitochondrial fusion mediated by protein kinase A activation leading to phosphorylation of dynamin-related protein 1, expression of mitofusin-1 and OPA-1, and increased myocardial adenosine triphosphate (ATP) content. GLP-1R blockade with exendin (9-39) exacerbated cardiac dysfunction and led to fragmented mitochondria with disarrayed cristae in cardiomyocytes and reduction of myocardial ATP content. In cultured cardiomyocytes, GLP-1 increased expression of mitochondrial fusion-related proteins and ATP content. When GLP-1 and exendin (9-39) were administered together, their effects cancelled out. Conclusions Increased intestinal GLP-1 secretion is an adaptive response to heart failure that is enhanced by miglitol. This could be an effective strategy for treating heart failure through regulation of mitochondrial dynamics.


Sign in / Sign up

Export Citation Format

Share Document