scholarly journals Mutant p53 Gain-of-Function: Role in Cancer Development, Progression, and Therapeutic Approaches

Author(s):  
Eduardo Alvarado-Ortiz ◽  
Karen Griselda de la Cruz-López ◽  
Jared Becerril-Rico ◽  
Miguel Angel Sarabia-Sánchez ◽  
Elizabeth Ortiz-Sánchez ◽  
...  

Frequent p53 mutations (mutp53) not only abolish tumor suppressor capacities but confer various gain-of-function (GOF) activities that impacts molecules and pathways now regarded as central for tumor development and progression. Although the complete impact of GOF is still far from being fully understood, the effects on proliferation, migration, metabolic reprogramming, and immune evasion, among others, certainly constitute major driving forces for human tumors harboring them. In this review we discuss major molecular mechanisms driven by mutp53 GOF. We present novel mechanistic insights on their effects over key functional molecules and processes involved in cancer. We analyze new mechanistic insights impacting processes such as immune system evasion, metabolic reprogramming, and stemness. In particular, the increased lipogenic activity through the mevalonate pathway (MVA) and the alteration of metabolic homeostasis due to interactions between mutp53 and AMP-activated protein kinase (AMPK) and Sterol regulatory element-binding protein 1 (SREBP1) that impact anabolic pathways and favor metabolic reprograming. We address, in detail, the impact of mutp53 over metabolic reprogramming and the Warburg effect observed in cancer cells as a consequence, not only of loss-of-function of p53, but rather as an effect of GOF that is crucial for the imbalance between glycolysis and oxidative phosphorylation. Additionally, transcriptional activation of new targets, resulting from interaction of mutp53 with NF-kB, HIF-1α, or SREBP1, are presented and discussed. Finally, we discuss perspectives for targeting molecules and pathways involved in chemo-resistance of tumor cells resulting from mutp53 GOF. We discuss and stress the fact that the status of p53 currently constitutes one of the most relevant criteria to understand the role of autophagy as a survival mechanism in cancer, and propose new therapeutic approaches that could promote the reduction of GOF effects exercised by mutp53 in cancer.

2019 ◽  
Vol 25 (29) ◽  
pp. 3098-3111 ◽  
Author(s):  
Luca Liberale ◽  
Giovanni G. Camici

Background: The ongoing demographical shift is leading to an unprecedented aging of the population. As a consequence, the prevalence of age-related diseases, such as atherosclerosis and its thrombotic complications is set to increase in the near future. Endothelial dysfunction and vascular stiffening characterize arterial aging and set the stage for the development of cardiovascular diseases. Atherosclerotic plaques evolve over time, the extent to which these changes might affect their stability and predispose to sudden complications remains to be determined. Recent advances in imaging technology will allow for longitudinal prospective studies following the progression of plaque burden aimed at better characterizing changes over time associated with plaque stability or rupture. Oxidative stress and inflammation, firmly established driving forces of age-related CV dysfunction, also play an important role in atherosclerotic plaque destabilization and rupture. Several genes involved in lifespan determination are known regulator of redox cellular balance and pre-clinical evidence underlines their pathophysiological roles in age-related cardiovascular dysfunction and atherosclerosis. Objective: The aim of this narrative review is to examine the impact of aging on arterial function and atherosclerotic plaque development. Furthermore, we report how molecular mechanisms of vascular aging might regulate age-related plaque modifications and how this may help to identify novel therapeutic targets to attenuate the increased risk of CV disease in elderly people.


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Richard C Godby ◽  
Charu Munjal ◽  
Amy M Opoka ◽  
Daria A Narmoneva ◽  
Robert B Hinton

Introduction Heart valve disease affects over 2% of the population, leading to at least 20,000 deaths and $1 billion in direct costs in the US each year. Calcific aortic valve disease (CAVD) is linked to loss of function mutations in NOTCH1 that result in osteogenic gene induction. In vitro animal studies have established that multiple osteogenic targets are mediated through induction of p-ERK 1/2 signaling; however, the relationship between NOTCH1 and p-ERK has not been examined in primary human aortic valvar interstitial cells (AVICs). Hypothesis We tested the hypothesis that chemically-induced NOTCH1 suppression results in mineralization due to p-ERK 1/2 activation in human AVICs. Methods Human AVICs were isolated from CAVD specimens at the time of valve replacement. AVICs were cultured for two weeks in complete media containing DMEM and 10% FBS, and treated with calcific media (10mM b-glycerol phosphate; 60μM ascorbic acid-2-phosphate; 1μM dexamethasone), which has been shown to suppress NOTCH1 signaling. Standard real-time RT-PCR, western blot, and immunocytochemistry were used to compare groups. Results Treatment with calcific media resulted in a 2.3 fold decrease in the level of NOTCH1 expression and a 3 fold increase in p-ERK 1/2 expression, assessed with both western blots and immunocytochemistry. Interestingly, calcific media also induced a 3.5 fold decrease in VEGF, consistent with early osteogenic differentiation. Additionally, the AVICs treated with calcific media demonstrated overt calcification by Alizarin Red staining. Conclusions Human AVICs demonstrated calcification associated with p-ERK 1/2 activation and reduced NOTCH1 levels, suggesting p-ERK inhibition may mitigate the effects of NOTCH loss of function, thereby representing a potential pharmacologic therapy for CAVD. Further investigation of the molecular mechanisms linking NOTCH1 and p-ERK are warranted, including studies that specifically inhibit NOTCH1 signaling and define the impact of mechanical forces on molecular pathways, thereby identifying mechanisms underlying CAVD progression.


2018 ◽  
Vol 18 (6) ◽  
pp. 484-493 ◽  
Author(s):  
Xiang Cheng ◽  
Jianying Li ◽  
Deliang Guo

Lipid metabolism reprogramming emerges as a new hallmark of malignancies. Sterol regulatory element-binding proteins (SREBPs), which are central players in lipid metabolism, are endoplasmic reticulum (ER)-bound transcription factors that control the expression of genes important for lipid synthesis and uptake. Their transcriptional activation requires binding to SREBP cleavageactivating protein (SCAP) to translocate their inactive precursors from the ER to the Golgi to undergo cleavage and subsequent nucleus translocation of their NH2-terminal forms. Recent studies have revealed that SREBPs are markedly upregulated in human cancers, providing the mechanistic link between lipid metabolism alterations and malignancies. Pharmacological or genetic inhibition of SCAP or SREBPs significantly suppresses tumor growth in various cancer models, demonstrating that SCAP/SREBPs could serve as promising metabolic targets for cancer therapy. In this review, we will summarize recent progress in our understanding of the underlying molecular mechanisms regulating SCAP/SREBPs and lipid metabolism in malignancies, discuss new findings about SREBP trafficking, which requires SCAP N-glycosylation, and introduce a newly identified microRNA-29-mediated negative feedback regulation of the SCAP/SREBP pathway. Moreover, we will review recently developed inhibitors targeting the SCAP/SREBP pathway for cancer treatment.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2519-2519
Author(s):  
Koichi Ricardo Katsumura ◽  
Peng Liu ◽  
Charu Mehta ◽  
Kyle J Hewitt ◽  
Alexandra Soukup ◽  
...  

The master regulator of hematopoiesis GATA2 controls generation and function of hematopoietic stem and progenitor cells, and heterozygous GATA2 mutations create a predisposition to develop immunodeficiency, myelodysplasia, and acute myeloid leukemia (Spinner et al. Blood, 2014; Dickinson et al. Blood, 2014; Churpek and Bresnick J. Clin. Invest. 2019). Although mechanisms that trigger the transition of a non-pathogenic GATA2 mutation into overt pathology are enigmatic, a paradigm has arisen in which GATA2 mutations are considered to be loss-of-function. We developed a genetic rescue assay to quantify the function of wild type GATA2 and GATA2 disease mutants when expressed at near-physiological levels in primary progenitor cells and demonstrated that GATA2 disease mutations abrogate certain biological and molecular activities, while enabling others (Katsumura et al., 2018, PNAS). We isolated lineage-negative (Lin-) or Lin-Kit+ cells from fetal liver of mice with a homozygous mutation of the Gata2 -77 enhancer, which downregulates Gata2 expression by ~80%. The mutant progenitor cells are largely defective in erythroid, megakaryocytic and granulocytic differentiation and exhibit a predominant monocytic differentiation fate (Johnson et al., 2015, Science Adv.). We compared GATA2 and GATA2 disease mutant activities in the rescue system using a colony formation assay. GATA2, R307W mutant (in N-finger) and T354M mutant (in DNA-binding C-finger) rescued myeloid colony formation and promoted granulocyte proliferation. Surprisingly, R307W and T354M induced more CFU-GM than GATA2. GATA2 and R307W, but not T354M, rescued BFU-E. These data indicated that GATA2 disease mutations were not strictly inhibitory, and in certain contexts, mutant activities exceeded that of GATA2. To extend these results, we subjected -77+/+ or -77-/- Lin- cells to a short-term ex vivo liquid culture, expressed GATA2, R307W, or T354M and used RNA-seq to elucidate progenitor cell transcriptomes. While -77+/+ Lin- cells generate erythroid and myeloid cells, -77-/- Lin- cells are competent for myeloid, but not erythroid, differentiation. Comparison of -77+/+ and -77-/- cell transcriptomes revealed 3064 differentially expressed genes (>2-fold). 1824 genes were >2-fold higher in -77+/+ cells, and 1240 genes were >2-fold higher in -77-/- cells. GATA2 expression in -77-/- cells activated 834 genes >2-fold and repressed 503 genes >2-fold. 60-65% of these genes overlapped with genes differentially expressed between -77+/+ cells and -77-/- cells. R307W expression activated 661 genes >2-fold and repressed 523 genes >2-fold. T354M expression activated 468 genes >2-fold and repressed 575 genes >2-fold. The genes regulated by mutants included GATA2-regulated genes and certain genes that were not GATA2-regulated. Multiple genes were hypersensitive to the mutants, relative to GATA2, and the mutants ectopically regulated certain genes. However, R307W and T354M did not universally regulate an identical gene cohort. For example, both R307W and T354M activated Ncam1, Nrg4, and Mpo more strongly than GATA2. R307W, but not T354M, activated Ear2 and Ces1d more strongly than GATA2. By contrast, T354M, but not R307W, activated Ctsg, Epx, and Rab38 more strongly than GATA2. Both R307W and T354M repressed macrophage genes similarly to GATA2, but they lacked the capacity to activate mast cell genes, differing from GATA2. To elucidate molecular mechanisms underlying GATA2 mutant activities, we leveraged our prior discovery that p38 or ERK kinases induce multi-site GATA2 phosphorylation (Katsumura et al. Blood. 2017). We tested whether these kinases mediate the ectopic transcriptional regulatory activity of GATA2 disease mutants. p38 inhibition attenuated aberrant regulation of Ear2 and Ces1d by R307W (p < 0.05), and mutation of S192 to S192A decreased R307W-induced CFU-GM formation by 49% (p < 0.05). In aggregate, these results indicate that GATA2 disease mutants exert context-dependent activities to regulate transcription and differentiation, activities can be signal-dependent and certain activities are distinct from GATA2. It is attractive to consider the pathogenic consequences of GATA2 disease mutant gain-of-function activities, and an important implication is GATA2 mutation-associated hematologic diseases might not solely reflect haploinsufficiency. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 1 (1) ◽  
pp. H1-H8 ◽  
Author(s):  
Tatiane Gorski ◽  
Katrien De Bock

Skeletal muscle relies on an ingenious network of blood vessels, which ensures optimal oxygen and nutrient supply. An increase in muscle vascularization is an early adaptive event to exercise training, but the cellular and molecular mechanisms underlying exercise-induced blood vessel formation are not completely clear. In this review, we provide a concise overview on how exercise-induced alterations in muscle metabolism can evoke metabolic changes in endothelial cells (ECs) that drive muscle angiogenesis. In skeletal muscle, angiogenesis can occur via sprouting and splitting angiogenesis and is dependent on vascular endothelial growth factor (VEGF) signaling. In the resting muscle, VEGF levels are controlled by the estrogen-related receptor γ (ERRγ). Upon exercise, the transcriptional coactivator peroxisome-proliferator-activated receptor-γ coactivator-1α (PGC1α) orchestrates several adaptations to endurance exercise within muscle fibers and simultaneously promotes transcriptional activation of Vegf expression and increased muscle capillary density. While ECs are highly glycolytic and change their metabolism during sprouting angiogenesis in development and disease, a similar role for EC metabolism in exercise-induced angiogenesis in skeletal muscle remains to be elucidated. Nonetheless, recent studies have illustrated the importance of endothelial hydrogen sulfide and sirtuin 1 (SIRT1) activity for exercise-induced angiogenesis, suggesting that EC metabolic reprogramming may be fundamental in this process. We hypothesize that the exercise-induced angiogenic response can also be modulated by metabolic crosstalk between muscle and the endothelium. Defining the underlying molecular mechanisms responsible for skeletal muscle angiogenesis in response to exercise will yield valuable insight into metabolic regulation as well as the determinants of exercise performance.


2020 ◽  
Vol 13 (10) ◽  
pp. dmm045815 ◽  
Author(s):  
Gideon L. Hughes ◽  
Michael A. Lones ◽  
Matthew Bedder ◽  
Peter D. Currie ◽  
Stephen L. Smith ◽  
...  

ABSTRACTAnimal models of human disease provide an in vivo system that can reveal molecular mechanisms by which mutations cause pathology, and, moreover, have the potential to provide a valuable tool for drug development. Here, we have developed a zebrafish model of Parkinson's disease (PD) together with a novel method to screen for movement disorders in adult fish, pioneering a more efficient drug-testing route. Mutation of the PARK7 gene (which encodes DJ-1) is known to cause monogenic autosomal recessive PD in humans, and, using CRISPR/Cas9 gene editing, we generated a Dj-1 loss-of-function zebrafish with molecular hallmarks of PD. To establish whether there is a human-relevant parkinsonian phenotype in our model, we adapted proven tools used to diagnose PD in clinics and developed a novel and unbiased computational method to classify movement disorders in adult zebrafish. Using high-resolution video capture and machine learning, we extracted novel features of movement from continuous data streams and used an evolutionary algorithm to classify parkinsonian fish. This method will be widely applicable for assessing zebrafish models of human motor diseases and provide a valuable asset for the therapeutics pipeline. In addition, interrogation of RNA-seq data indicate metabolic reprogramming of brains in the absence of Dj-1, adding to growing evidence that disruption of bioenergetics is a key feature of neurodegeneration.This article has an associated First Person interview with the first author of the paper.


1999 ◽  
Vol 276 (4) ◽  
pp. G800-G807 ◽  
Author(s):  
Jeong H. Kim ◽  
Shufen Meng ◽  
Amy Shei ◽  
Richard A. Hodin

We have used sodium butyrate-treated HT-29 cells as an in vitro model system to study the molecular mechanisms underlying intestinal alkaline phosphatase (IAP) gene activation. Transient transfection assays using human IAP-CAT reporter genes along with DNase I footprinting were used to localize a critical cis element (IF-III) corresponding to the sequence 5′-GACTGGGCGGGGTCAAGATGGA-3′. Deletion of the IF-III element resulted in a dramatic reduction in reporter gene activity, and IF-III was shown to function in the context of a heterologous (SV40) promoter in a cell type-specific manner, further supporting its functional role in IAP transactivation. Electrophoretic mobility shift assays revealed that IF-III binds Sp1 and Sp3, but these factors comprise only a portion of the total nuclear binding and appear to mediate only a small portion of its transcriptional activity. IF-III does not correspond to any previously characterized regulatory region from other intestine-specific genes. We have thus identified a novel, Sp1-related cis-regulatory element in the human IAP gene that appears to play a role in its transcriptional activation during differentiation in vitro.


1994 ◽  
Vol 14 (11) ◽  
pp. 7340-7351 ◽  
Author(s):  
E Suh ◽  
L Chen ◽  
J Taylor ◽  
P G Traber

The continually renewing epithelium of the intestinal tract arises from the visceral endoderm by a series of complex developmental transitions. The mechanisms that establish and maintain the processes of cellular renewal, cell lineage allocation, and tissue restriction and spatial assignment of gene expression in this epithelium are unknown. An understanding of the regulation of intestine-specific gene regulation may provide information on the molecular mechanisms that direct these processes. In this regard, we show that intestine-specific transcription of sucrase-isomaltase, a gene that is expressed exclusively in differentiated enterocytes, is dependent on binding of a tissue-specific homeodomain protein (mouse Cdx-2) to an evolutionarily conserved promoter element in the sucrase-isomaltase gene. This protein is a member of the caudal family of homeodomain genes which appear to function in early developmental events in Drosophila melanogaster, during gastrulation in many species, and in intestinal endoderm. Unique for this homeodomain gene family, we show that mouse Cdx-2 binds as a dimer to its regulatory element and that dimerization in vitro is dependent on redox potential. These characteristics of the interaction of Cdx-2 with its regulatory element provide for a number of potential mechanisms for transcriptional regulation. Taken together, these findings suggest that members of the Cdx gene family play a fundamental role both in the establishment of the intestinal phenotype during development and in maintenance of this phenotype via transcriptional activation of differentiated intestinal genes.


2020 ◽  
Author(s):  
Oana Ursu ◽  
James T. Neal ◽  
Emily Shea ◽  
Pratiksha I. Thakore ◽  
Livnat Jerby-Arnon ◽  
...  

AbstractGenome sequencing studies have identified millions of somatic variants in cancer, but their phenotypic impact remains challenging to predict. Current experimental approaches to distinguish between functionally impactful and neutral variants require customized phenotypic assays that often report on average effects, and are not easily scaled. Here, we develop a generalizable, high-dimensional, and scalable approach to functionally assess variant impact in single cells by pooled Perturb-seq. Specifically, we assessed the impact of 200 TP53 and KRAS variants in >300,000 single lung cancer cells, and used the profiles to categorize variants into phenotypic subsets to distinguish gain-of-function, loss-of-function and dominant negative variants, which we validated by comparison to orthogonal assays. Surprisingly, KRAS variants did not merely fit into discrete functional categories, but rather spanned a continuum of gain-of-function phenotypes driven by quantitative shifts in cell composition at the single cell level. We further discovered novel gain-of-function KRAS variants whose impact could not have been predicted solely by their occurrence in patient samples. Our work provides a scalable, gene-agnostic method for coding variant impact phenotyping, which can be applied in cancer and other diseases driven by somatic or germline coding mutations.


2021 ◽  
Author(s):  
Sandrine Lenglez ◽  
Ariane Sablon ◽  
Gilles Fénelon ◽  
Anne Boland ◽  
Jean-François Deleuze ◽  
...  

Abstract Platelet-derived growth factor receptor beta (PDGFRB) is one of the genes associated with primary familial brain calcification (PFBC), an inherited neurological disease (OMIM:173410). Genetic analysis of patients and families revealed at least 13 PDGFRB heterozygous missense variants, including two novel ones described in the present report. Limited experimental data published on five of these variants had suggested that they decrease the receptor activity. No functional information was available on the impact of variants located within the receptor extracellular domains. Here, we performed a comprehensive molecular analysis of PDGFRB variants linked to PFBC. Mutated receptors were transfected in various cell lines to monitor receptor expression, signaling, mitogenic activity, and ligand binding. Four mutants caused a complete loss of tyrosine kinase activity in multiple assays. One of the novel variants, p.Pro154Ser, decreased the receptor expression and abolished binding of platelet-derived growth factor (PDGF-BB). Others showed a partial loss of function related to reduced expression or signaling. Combining clinical, genetic and molecular data, we consider nine variants as pathogenic or likely pathogenic, three as benign or likely benign and one as a variant of unknown significance. We discuss the possible relationship between the variant residual activity, incomplete penetrance, brain calcification and neurological symptoms. In conclusion, we identified distinct molecular mechanisms whereby PDGFRB variants may result in a receptor loss of function. This work will facilitate genetic counselling in PFBC.


Sign in / Sign up

Export Citation Format

Share Document