scholarly journals The RNA N6-Methyladenosine Methyltransferase METTL3 Promotes the Progression of Kidney Cancer via N6-Methyladenosine-Dependent Translational Enhancement of ABCD1

Author(s):  
Yue Shi ◽  
Yanliang Dou ◽  
Jianye Zhang ◽  
Jie Qi ◽  
Zijuan Xin ◽  
...  

The role of N6-methyladenosine (m6A)-modifying proteins in cancer progression depends on the cell type and mRNA affected. However, the biological role and underlying mechanism of m6A in kidney cancer is limited. Here, we discovered the variability in m6A methyltransferase METTL3 expression was significantly increased in clear cell renal cell carcinoma (ccRCC) the most common subtype of renal cell carcinoma (RCC), and high METTL3 expression predicts poor prognosis in ccRCC patients using a dataset from The Cancer Genome Atlas (TCGA). Importantly, knockdown of METTL3 in ccRCC cell line impaired both cell migration capacity and tumor spheroid formation in soft fibrin gel, a mechanical method for selecting stem-cell-like tumorigenic cells. Consistently, overexpression of METTL3 but not methyltransferase activity mutant METTL3 can promote cell migration, spheroid formation in cell line and tumor growth in xenograft model. Transcriptional profiling of m6A in ccRCC tissues identified the aberrant m6A transcripts were enriched in cancer-related pathways. Further m6A-sequencing of METTL3 knockdown cells and functional studies confirmed that translation of ABCD1, an ATP-binding cassette (ABC) transporter of fatty acids, was inhibited by METTL3 in m6A-dependent manner. Moreover, knockdown of ABCD1 in ccRCC cells decreased cancer cell migration and spheroid formation, and upregulation of ABCD1 acts as an adverse prognosis factor of kidney cancer patients. In summary, our study identifies that METTL3 promotes ccRCC progression through m6A modification-mediated translation of ABCD1, providing an epitranscriptional insight into the molecular mechanism in kidney cancer.

Cancers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 303 ◽  
Author(s):  
Tsung-Chieh Lin ◽  
Yuan-Ming Yeh ◽  
Wen-Lang Fan ◽  
Yu-Chan Chang ◽  
Wei-Ming Lin ◽  
...  

Ghrelin is a peptide hormone, originally identified from the stomach, that functions as an endogenous ligand of the growth hormone secretagogue receptor (GHSR) and promotes growth hormone (GH) release and food intake. Increasing reports point out ghrelin’s role in cancer progression. We previously characterized ghrelin’s prognostic significance in the clear cell subtype of renal cell carcinoma (ccRCC), and its pro-metastatic ability via Snail-dependent cell migration. However, ghrelin’s activity in promoting cell invasion remains obscure. In this study, an Ingenuity Pathway Analysis (IPA)-based investigation of differentially expressed genes in Cancer Cell Line Encyclopedia (CCLE) dataset indicated the potential association of Aurora A with ghrelin in ccRCC metastasis. In addition, a significant correlation between ghrelin and Aurora A expression level in 15 ccRCC cell line was confirmed by variant probes. ccRCC patients with high ghrelin and Aurora A status were clinically associated with poor outcome. We further observed that ghrelin upregulated Aurora A at the protein and RNA levels and that ghrelin-induced ccRCC in vitro invasion and in vivo metastasis occurred in an Aurora A-dependent manner. Furthermore, MMP1, 2, 9 and 10 expressions are associated with poor outcome. In particular, MMP10 is significantly upregulated and required for the ghrelin-Aurora A axis to promote ccRCC invasion. The results of this study indicated a novel signaling mechanism in ccRCC metastasis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yanting Luo ◽  
Louise Medina Bengtsson ◽  
Xuechun Wang ◽  
Tianhe Huang ◽  
Guoqiang Liu ◽  
...  

Abstract Ubiquinol-cytochrome c reductase hinge protein (UQCRH) is the hinge protein for the multi-subunit complex III of the mitochondrial electron transport chain and is involved in the electron transfer reaction between cytochrome c1 and c. Recent genome-wide transcriptomic and epigenomic profiling of clear cell renal cell carcinoma (ccRCC) by The Cancer Genome Atlas (TCGA) identified UQCRH as the top-ranked gene showing inverse correlation between DNA hypermethylation and mRNA downregulation. The function and underlying mechanism of UQCRH in the Warburg effect metabolism of ccRCC have not been characterized. Here, we verified the clinical association of low UQCRH expression and shorter survival of ccRCC patients through in silico analysis and identified KMRC2 as a highly relevant ccRCC cell line that displays hypermethylation-induced UQCRH extinction. Ectopic overexpression of UQCRH in KMRC2 restored mitochondrial membrane potential, increased oxygen consumption, and attenuated the Warburg effect at the cellular level. UQCRH overexpression in KMRC2 induced higher apoptosis and slowed down in vitro and in vivo tumor growth. UQCRH knockout by CRISPR/Cas9 had little impact on the metabolism and proliferation of 786O ccRCC cell line, suggesting the dispensable role of UQCRH in cells that have entered a Warburg-like state through other mechanisms. Together, our study suggests that loss of UQCRH expression by hypermethylation may promote kidney carcinogenesis through exacerbating the functional decline of mitochondria thus reinforcing the Warburg effect.


2020 ◽  
Vol 12 ◽  
pp. 175883592097711
Author(s):  
Xia Ran ◽  
Jinyuan Xiao ◽  
Yi Zhang ◽  
Huajing Teng ◽  
Fang Cheng ◽  
...  

Background: Intratumor heterogeneity (ITH) has been shown to be inversely associated with immune infiltration in several cancers including clear cell renal cell carcinoma (ccRCC), but it remains unclear whether ITH is associated with response to immunotherapy (e.g. PD-1 blockade) in ccRCC. Methods: We quantified ITH using mutant-allele tumor heterogeneity, investigated the association of ITH with immune parameters in patients with ccRCC ( n = 336) as well as those with papillary RCC (pRCC, n = 280) from The Cancer Genome Atlas, and validations were conducted in patients with ccRCC from an independent cohort ( n = 152). The relationship between ITH and response to anti-PD-1 immunotherapy was explored in patients with metastatic ccRCC from a clinical trial of anti-PD-1 therapy ( n = 35), and validated in three equal-size simulated data sets ( n = 60) generated by random sampling with replacement based on this clinical trial cohort. Results: In ccRCC, low ITH was associated with better survival, more reductions in tumor burden, and clinical benefit of anti-PD-1 immunotherapy through modulating immune activity involving more neoantigens, elevated expression of HLA class I genes, and higher abundance of dendritic cells. Furthermore, we found that the association between the level of ITH and response to PD-1 blockade was independent of the mutation status of PBRM1 and that integrating both factors performed better than the individual predictors in predicting the benefit of anti-PD-1 immunotherapy in ccRCC patients. In pRCC, increased immune activity was also observed in low- versus high-ITH tumors, including higher neoantigen counts, increased abundance of monocytes, and decreased expression of PD-L1 and PD-L2. Conclusions: ITH may be helpful in the identification of patients who could benefit from PD-1 blockade in ccRCC, and even in pRCC where no genomic metrics has been found to correlate with response to immune checkpoint inhibitors.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 261 ◽  
Author(s):  
Patrick T. Gomella ◽  
W. Linehan ◽  
Mark W. Ball

Renal cell carcinoma is a term that represents multiple different disease processes, each driven by different genetic alterations, with distinct histology, and biological potential which necessitates divergent management strategies. This review discusses the genetic alterations seen in several forms of hereditary kidney cancer and how that knowledge can dictate when and how to intervene with a focus on the surgical management of these tumors.


Metabolites ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Tomonori Sato ◽  
Yoshihide Kawasaki ◽  
Masamitsu Maekawa ◽  
Shinya Takasaki ◽  
Kento Morozumi ◽  
...  

Metabolomics analysis possibly identifies new therapeutic targets in treatment resistance by measuring changes in metabolites accompanying cancer progression. We previously conducted a global metabolomics (G-Met) study of renal cell carcinoma (RCC) and identified metabolites that may be involved in sunitinib resistance in RCC. Here, we aimed to elucidate possible mechanisms of sunitinib resistance in RCC through intracellular metabolites. We established sunitinib-resistant and control RCC cell lines from tumor tissues of RCC cell (786-O)-injected mice. We also quantified characteristic metabolites identified in our G-Met study to compare intracellular metabolism between the two cell lines using liquid chromatography-mass spectrometry. The established sunitinib-resistant RCC cell line demonstrated significantly desuppressed protein kinase B (Akt) and mesenchymal-to-epithelial transition (MET) phosphorylation compared with the control RCC cell line under sunitinib exposure. Among identified metabolites, glutamine, glutamic acid, and α-KG (involved in glutamine uptake into the tricarboxylic acid (TCA) cycle for energy metabolism); fructose 6-phosphate, D-sedoheptulose 7-phosphate, and glucose 1-phosphate (involved in increased glycolysis and its intermediate metabolites); and glutathione and myoinositol (antioxidant effects) were significantly increased in the sunitinib-resistant RCC cell line. Particularly, glutamine transporter (SLC1A5) expression was significantly increased in sunitinib-resistant RCC cells compared with control cells. In this study, we demonstrated energy metabolism with glutamine uptake and glycolysis upregulation, as well as antioxidant activity, was also associated with sunitinib resistance in RCC cells.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fei Meng ◽  
Luojin Zhang ◽  
Mingjun Zhang ◽  
Kaiqin Ye ◽  
Wei Guo ◽  
...  

Abstract Background BCL2L13 belongs to the BCL2 super family, with its protein product exhibits capacity of apoptosis-mediating in diversified cell lines. Previous studies have shown that BCL2L13 has functional consequence in several tumor types, including ALL and GBM, however, its function in kidney cancer remains as yet unclearly. Methods Multiple web-based portals were employed to analyze the effect of BCL2L13 in kidney cancer using the data from TCGA database. Functional enrichment analysis and hubs of BCL2L13 co-expressed genes in clear cell renal cell carcinoma (ccRCC) and papillary renal cell carcinoma (pRCC) were carried out on Cytoscape. Evaluation of BCL2L13 protein level was accomplished through immunohistochemistry on paraffin embedded renal cancer tissue sections. Western blotting and flow cytometry were implemented to further analyze the pro-apoptotic function of BCL2L13 in ccRCC cell line 786-0. Results BCL2L13 expression is significantly decreased in ccRCC and pRCC patients, however, mutations and copy number alterations are rarely observed. The poor prognosis of ccRCC that derived from down-regulated BCL2L13 is independent of patients’ gender or tumor grade. Furthermore, BCL2L13 only weakly correlates with the genes that mutated in kidney cancer or the genes that associated with inherited kidney cancer predisposing syndrome, while actively correlates with SLC25A4. As a downstream effector of BCL2L13 in its pro-apoptotic pathway, SLC25A4 is found as one of the hub genes that involved in the physiological function of BCL2L13 in kidney cancer tissues. Conclusions Down-regulation of BCL2L13 renders poor prognosis in ccRCC and pRCC. This disadvantageous factor is independent of any well-known kidney cancer related genes, so BCL2L13 can be used as an effective indicator for prognostic evaluation of renal cell carcinoma.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Kang Yang ◽  
Xiao-fan Lu ◽  
Peng-cheng Luo ◽  
Jie Zhang

Background. Clear cell renal cell carcinoma (ccRCC), the most common subtype of renal cell carcinoma (RCC), usually is representative of metastatic heterogeneous neoplasm that links with poor prognosis, but the pathogenesis of ccRCC remains unclear. Currently, numerous evidences prove that long noncoding RNAs (lncRNAs) are considered as competing endogenous RNA (ceRNA) to participate in cellular processes of tumors. Therefore, to investigate the underlying mechanisms of ccRCC, the expression profiles of lncRNAs, miRNAs, and mRNAs were downloaded from the Cancer Genome Atlas (TCGA) database. A total of 1526 differentially expressed lncRNAs (DElncRNAs), 54 DEmiRNAs, and 2352 DEmRNAs were identified. To determine the connection of them, all DElncRNAs were input to the miRcode database. The results indicated that 85 DElncRNAs could connect with 9 DEmiRNAs in relation to our study. Then, databases of TargetScan and miRDB were used to search for targeted genes with reference to DEmiRNAs. The results showed that 203 out of 2352 targeted genes were identified in our TCGA set. Subsequently, ceRNA network was constructed according to Cytoscape and the targeted genes were functionally analyzed to elucidate the mechanisms of DEmRNAs. The results of survival analysis and regression analysis indicated that 6 DElncRNAs named COL18A1-AS1, WT1-AS, LINC00443, TCL6, AL356356.1, and SLC25A5-AS1 were significantly correlative with the clinical traits of ccRCC patients and could be served as predictors for ccRCC. Finally, these findings were validated by quantitative RT-PCR (qRT-PCR). Based on these discoveries, we believe that this identified ceRNA network will provide a novel perspective to elucidate ccRCC pathogenesis.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qianwei Xing ◽  
Tengyue Zeng ◽  
Shouyong Liu ◽  
Hong Cheng ◽  
Limin Ma ◽  
...  

Abstract Background The role of glycolysis in tumorigenesis has received increasing attention and multiple glycolysis-related genes (GRGs) have been proven to be associated with tumor metastasis. Hence, we aimed to construct a prognostic signature based on GRGs for clear cell renal cell carcinoma (ccRCC) and to explore its relationships with immune infiltration. Methods Clinical information and RNA-sequencing data of ccRCC were obtained from The Cancer Genome Atlas (TCGA) and ArrayExpress datasets. Key GRGs were finally selected through univariate COX, LASSO and multivariate COX regression analyses. External and internal verifications were further carried out to verify our established signature. Results Finally, 10 GRGs including ANKZF1, CD44, CHST6, HS6ST2, IDUA, KIF20A, NDST3, PLOD2, VCAN, FBP1 were selected out and utilized to establish a novel signature. Compared with the low-risk group, ccRCC patients in high-risk groups showed a lower overall survival (OS) rate (P = 5.548Ee-13) and its AUCs based on our established signature were all above 0.70. Univariate/multivariate Cox regression analyses further proved that this signature could serve as an independent prognostic factor (all P < 0.05). Moreover, prognostic nomograms were also created to find out the associations between the established signature, clinical factors and OS for ccRCC in both the TCGA and ArrayExpress cohorts. All results remained consistent after external and internal verification. Besides, nine out of 21 tumor-infiltrating immune cells (TIICs) were highly related to high- and low- risk ccRCC patients stratified by our established signature. Conclusions A novel signature based on 10 prognostic GRGs was successfully established and verified externally and internally for predicting OS of ccRCC, helping clinicians better and more intuitively predict patients’ survival.


Sign in / Sign up

Export Citation Format

Share Document