scholarly journals HSP90 Inhibitor 17-AAG Attenuates Nucleus Pulposus Inflammation and Catabolism Induced by M1-Polarized Macrophages

Author(s):  
Shuo Zhang ◽  
Peng Wang ◽  
Binwu Hu ◽  
Weijian Liu ◽  
Xiao Lv ◽  
...  

Overactivated inflammation and catabolism induced by proinflammatory macrophages are involved in the pathological processes of intervertebral disc (IVD) degeneration (IVDD). Our previous study suggested the protective role of inhibiting heat shock protein 90 (HSP90) in IVDD, while the underlying mechanisms need advanced research. The current study investigated the effects of HSP90 inhibitor 17-AAG on nucleus pulposus (NP) inflammation and catabolism induced by M1-polarized macrophages. Immunohistochemical staining of degenerated human IVD samples showed massive infiltration of macrophages, especially M1 phenotype, as well as elevated levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α and matrix metalloproteinase (MMP)13. The conditioned medium (CM) of inflamed NP cells (NPCs) enhanced M1 polarization of macrophages, while the CM of M1 macrophages but not M2 macrophages promoted the expression of inflammatory factors and matrix proteases in NPCs. Additionally, we found that 17-AAG could represent anti-inflammatory and anti-catabolic effects by modulating both macrophages and NPCs. On the one hand, 17-AAG attenuated the pro-inflammatory activity of M1 macrophages via inhibiting nuclear factor-κB (NF-κB) pathway and mitogen-activated protein kinase (MAPK) pathways. On the other hand, 17-AAG dampened M1-CM-induced inflammation and catabolism in NPCs by upregulating HSP70 and suppressing the Janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) pathway. Moreover, both in vitro IVD culture models and murine disc puncture models supported that 17-AAG treatment decreased the levels of inflammatory factors and matrix proteases in IVD tissues. In conclusion, HSP90 inhibitor 17-AAG attenuates NP inflammation and catabolism induced by M1 macrophages, suggesting 17-AAG as a promising candidate for IVDD treatment.

2019 ◽  
Vol 68 (12) ◽  
pp. 1035-1047 ◽  
Author(s):  
Bohui Li ◽  
Chunmei Liu ◽  
Kaihong Tang ◽  
Xuening Dong ◽  
Longge Xue ◽  
...  

Abstract Objective This study was designed to investigate the role of AQP1 in the development of LPS-induced AKI and its potential regulatory mechanisms in the inflammatory responses of macrophages. Methods Male Wistar rats were injected intraperitoneally with LPS, and biochemical and histological renal damage was assessed. The levels of inflammatory mediators, macrophage markers and AQP1 in blood and kidney tissues were assessed by ELISA. RTPCR was used to assess changes in the relative levels of AQP1 mRNA induced by LPS. Western blot and immunofluorescence analyses were performed to assay the activation of the p38 MAPK and NF-κB pathways, respectively. The same detection methods were used in vitro to determine the regulatory mechanisms underlying AQP1 function. Results AQP1 mRNA levels were dramatically decreased in AKI rats following the increased expression of inflammatory factors. In vitro experiments demonstrated that silencing the AQP1 gene increased inflammatory mediator secretion, altered the classical activation of macrophages, greatly enhanced the phosphorylation of p38 and accelerated the translocation of NF-κB. Furthermore, these results were blocked by doramapimod, a p38 inhibitor. Therefore, these effects were mediated by the increased phosphorylation of p38 MAPK. Conclusion Our results suggest that altered AQP1 expression may be associated with the development of inflammation in AKI. AQP1 plays a protective role in modulating acute renal injury and can attenuate macrophage-mediated inflammatory responses by downregulating p38 MAPK activity in LPS-induced RAW264.7 cells. The pharmacological targeting of AQP1-mediated p38 MAPK signalling may provide a novel treatment approach for AKI.


2001 ◽  
Vol 280 (2) ◽  
pp. L354-L362 ◽  
Author(s):  
Pamela M. Lindroos ◽  
Yi-Zhe Wang ◽  
Annette B. Rice ◽  
James C. Bonner

Upregulation of the platelet-derived growth factor (PDGF) receptor-α (PDGFR-α) is a mechanism of myofibroblast hyperplasia during pulmonary fibrosis. We previously identified interleukin (IL)-1β as a major inducer of the PDGFR-α in rat pulmonary myofibroblasts in vitro. In this study, we report that staurosporine, a broad-spectrum kinase inhibitor, upregulates PDGFR-α gene expression and protein. A variety of other kinase inhibitors did not induce PDGFR-α expression. Staurosporine did not act via an IL-1β autocrine loop because the IL-1 receptor antagonist protein did not block staurosporine-induced PDGFR-α expression. Furthermore, staurosporine did not activate a variety of signaling molecules that were activated by IL-1β, including nuclear factor-κB, extracellular signal-regulated kinase, and c-Jun NH2-terminal kinase. However, both staurosporine- and IL-1β-induced phosphorylation of p38 mitogen-activated protein kinase and upregulation of PDGFR-α by these two agents was inhibited by the p38 inhibitor SB-203580. Finally, staurosporine inhibited basal and PDGF-stimulated mitogenesis over the same concentration range that induced PDGFR-α expression. Collectively, these data demonstrate that staurosporine is a useful tool for elucidating the signaling mechanisms that regulate PDGFR expression in lung connective tissue cells and possibly for evaluating the role of the PDGFR-α as a growth arrest-specific gene.


2001 ◽  
Vol 281 (6) ◽  
pp. C1819-C1824 ◽  
Author(s):  
Yao Song ◽  
Jay L. Zweier ◽  
Yong Xia

Recent studies showed that heat shock protein 90 (HSP90) enhances nitric oxide (NO) synthesis from endothelial and neuronal NO synthase (eNOS and nNOS, respectively). However, these findings were based on indirect NO measurements. Moreover, although our previous studies showed that the action of HSP90 involves increased Ca2+/calmodulin (Ca2+/CaM) binding, quantitative measurements of the effect of HSP90 on CaM binding to nNOS have been lacking. With electron paramagnetic resonance spectroscopy, we directly measured NO signals from purified nNOS. HSP90 augmented NO formation from nNOS in a dose-dependent manner. Tryptophan fluorescence-quenching measurements revealed that HSP90 markedly reduced the K d of CaM to nNOS (0.5 ± 0.1 nM vs. 9.4 ± 1.8 nM in the presence and absence of HSP90, P < 0.01). Ca2+ ionophore triggered strong NO production from nNOS-transfected cells, and this was significantly reduced by the HSP90 inhibitor geldanamycin. Thus these studies provide direct evidence demonstrating that HSP90 enhances nNOS catalytic function in vitro and in intact cells. The effect of HSP90 is mediated by the enhancement of CaM binding to nNOS.


2020 ◽  
Vol 69 (12) ◽  
pp. 1215-1234
Author(s):  
Hanxu Zeng ◽  
Xiangming Qi ◽  
Xingxin Xu ◽  
Yonggui Wu

Abstract Objective and design Macrophages exhibit strong phenotypic plasticity and can mediate renal inflammation by polarizing into an M1 phenotype. They play a pivotal role in diabetic nephropathy (DN). Here, we have investigated the regulatory role of transforming growth factor β-activated kinase 1-binding protein 1 (TAB1) in glycolysis and activation of macrophages during DN. Methods TAB1 was inhibited using siRNA in high glucose (HG)-stimulated bone marrow-derived macrophages (BMMs) and lentiviral vector-mediated TAB1 knockdown was used in streptozotocin (STZ)-induced diabetic mice. Western blotting, flow cytometry, qRT-PCR, ELISA, PAS staining and immunohistochemical staining were used for assessment of TAB1/nuclear factor-κB (NF-κB)/hypoxia-inducible factor-1α (HIF-1α), iNOS, glycolysis, inflammation and the clinical and pathological manifestations of diabetic nephropathy. Results We found that TAB1/NF-κB/HIF-1α, iNOS and glycolysis were up-regulated in BMMs under HG conditions, leading to release of further inflammatory factors, Downregulation of TAB1 could inhibit glycolysis/polarization of macrophages and inflammation in vivo and in vitro. Furthermore, albuminuria, the tubulointerstitial damage index and glomerular mesangial expansion index of STZ-induced diabetic nephropathy mice were decreased by TAB1 knockdown. Conclusions Our results suggest that the TAB1/NF-κB/HIF-1α signaling pathway regulates glycolysis and activation of macrophages in DN.


2005 ◽  
Vol 33 (4) ◽  
pp. 701-704 ◽  
Author(s):  
K. Kashfi ◽  
B. Rigas

Nitric-oxide-donating aspirin (NO-ASA), consisting of ASA (aspirin) plus an -ONO2 moiety linked to it via a molecular spacer, is a new drug for cancer prevention. NO-ASA seems to overcome the low potency and toxicity of traditional ASA. The -ONO2 moiety is responsible for releasing NO, and it appears to be required for biological activity. In studies in vitro, NO-ASA inhibits the growth of colon, pancreatic, prostate, lung, skin, leukaemia and breast cancer cells, and is up to 6000-fold more potent than traditional ASA. This effect is owing to cell kinetics [inhibition of proliferation, induction of apoptosis (multiple criteria) and blocking the G1 to S cell-cycle transition] and cell signalling [inhibition of Wnt signalling (IC50=0.2 μM), inhibition of NF-κB (nuclear factor κB) activation (IC50=7.5 μM), inhibition of nitric oxide synthase-2 expression (IC50=48 μM), inhibition of MAPK (mitogen-activated protein kinase) signalling (IC50=10 μM) and induction of cyclo-oxygenase-2 at approx. 10 μM]. In studies in vivo, NO-ASA inhibits intestinal carcinogenesis in Min mice (tumour multiplicity was reduced by 59% after 3 weeks, with no effect in control animals and no side effects) and in the N-nitrosobis(2-oxopropyl)amine model of pancreatic cancer, where there was an 89% reduction in NO-ASA (3000 p.p.m. in the diet)-treated animals (P<0.001). There was no statistically significant effect by traditional ASA at equimolar doses. Our data indicate that NO-ASA is a highly promising agent for the prevention and/or treatment of cancer.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Diana Spiegelberg ◽  
Andris Abramenkovs ◽  
Anja Charlotte Lundgren Mortensen ◽  
Sara Lundsten ◽  
Marika Nestor ◽  
...  

AbstractOncogenic client-proteins of the chaperone Heat shock protein 90 (HSP90) insure unlimited tumor growth and are involved in resistance to chemo- and radiotherapy. The HSP90 inhibitor Onalespib initiates the degradation of oncoproteins, and might also act as a radiosensitizer. The aim of this study was therefore to evaluate the efficacy of Onalespib in combination with external beam radiotherapy in an in vitro and in vivo approach. Onalespib downregulated client proteins, lead to increased apoptosis and caused DNA-double-strands. Monotherapy and combination with radiotherapy reduced colony formation, proliferation and migration assessed in radiosensitive HCT116 and radioresistant A431 cells. In vivo, a minimal treatment regimen for 3 consecutive days of Onalespib (3 × 10 mg/kg) doubled survival, whereas Onalespib with radiotherapy (3 × 2 Gy) caused a substantial delay in tumor growth and prolonged the survival by a factor of 3 compared to the HCT116 xenografted control group. Our results demonstrate that Onalespib exerts synergistic anti-cancer effects when combined with radiotherapy, most prominent in the radiosensitive cell models. We speculate that the depletion and downregulation of client proteins involved in signalling, migration and DNA repair mechanisms is the cause. Thus, individually, or in combination with radiotherapy Onalespib inhibits tumor growth and has the potential to improve radiotherapy outcomes, prolonging the overall survival of cancer patients.


2010 ◽  
Vol 31 (4) ◽  
pp. 1036-1050 ◽  
Author(s):  
Adam Denes ◽  
Barry W McColl ◽  
Sophie F Leow-Dyke ◽  
Katie Z Chapman ◽  
Neil E Humphreys ◽  
...  

Stroke induces a systemic response that involves rapid activation of inflammatory cascades, followed later by immunodepression. Experimental stroke-induced responses in the bone marrow, which is the primary source of circulating monocytes and granulocytes, have not been investigated previously. We show that cerebral ischaemia induced early (4 hours) release of CXCR2-positive granulocytes from the bone marrow, which was associated with rapid systemic upregulation of CXCL1 (a ligand for CXCR2) and granulocyte-colony-stimulating factor, a key cytokine involved in the mobilisation of bone marrow leukocytes. This process involves rapid activation of nuclear factor- κB and p38 mitogen-activated protein kinase in bone marrow myeloid cells. T-cell numbers in the bone marrow increased after stroke, and bone marrow cells did not show suppressed cytokine response to bacterial endotoxin stimulation in vitro. Stroke-induced laterality observed in the brain stem and in the bone marrow indicates direct involvement of the autonomic nervous system in stroke-induced cell mobilisation. We also show that systemic inflammatory changes and leukocyte responses in the bone marrow are profoundly affected by both anaesthetic and surgical stress. We conclude that stroke influences leukocyte responses in the bone marrow through multiple mechanisms and suggest that preclinical studies should take into consideration the effect of surgical manipulation in experimental models of stroke.


2007 ◽  
Vol 193 (2) ◽  
pp. 269-277 ◽  
Author(s):  
Martha Lappas ◽  
Michael Permezel ◽  
Gregory E Rice

Processes of human labour include increased oxidative stress, formation of inflammatory mediators (e.g. cytokines) and uterotonic phospholipid metabolites (e.g. prostaglandins). In non-gestational tissues, advanced glycation endproducts (AGE) induce the expression of pro-inflammatory molecules through mitogen-activated protein kinase and nuclear factor κB (NF-κB)-dependent pathways. Thus, the aim of this study was to investigate the effects of AGE on 8-isoprostane (a marker of oxidative stress), pro-inflammatory cytokine and prostaglandin release in human gestational tissues, and to define the signalling pathways involved. Human placenta and gestational membranes (amnion and choriodecidua combined; n=5) were incubated in the absence or presence of AGE–BSA (0.25, 0.5, 1 and 2 mg/ml) for 18 h. AGE significantly increased in vitro release of tumour necrosis factor-α, interleukin (IL)-1β, IL-6, IL-8, prostaglandin (PG)E2, PGF2α and 8-isoprostane from human placenta and gestational membranes. This was associated with a concomitant increase in NF-κB p65 activation and ERK 1/2 phosphorylation. AGE-stimulated 8-isoprostane, cytokine and prostaglandin production was significantly suppressed by the ERK 1/2 inhibitor U0126 and the NF-κB inhibitor BAY 11-7082. In conclusion, AGE mediates inflammatory actions in human gestational tissues. Protein kinases and the NF-κB pathway play an essential role in AGE signalling in human gestational tissues.


2000 ◽  
Vol 28 (2) ◽  
pp. 7-12 ◽  
Author(s):  
M. M. Manson ◽  
K. A. Holloway ◽  
L. M. Howells ◽  
E. A. Hudson ◽  
S. M. Plummer ◽  
...  

For a disease such as cancer, where a number of alterations to normal cell function accumulate over time, there are several opportunities to inhibit, slow down or even reverse the process. Many of the changes which drive the disease process occur in cell-signalling pathways that regulate proliferation and apoptosis. As our knowledge of these complicated signalling networks improves, it is becoming clear that many molecules, both drugs and naturally occurring dietary constituents, can interact beneficially with deregulated pathways. Aspirin and other non-steroidal anti-inflammatory drugs, as well as natural compounds present in plants such as green vegetables and tea, can modulate signalling by affecting kinase activity and therefore phosphorylation of key molecules. Examples of pathways which can be modulated by these agents include activation of the transcription factor nuclear factor κB by tumour promoters or cytokines, signalling by growth factors through the growth-factor receptor/extracellular-regulated protein kinase pathways and by a number of other molecules through the stress-activated c-Jun N-terminal kinase and p38 pathways. These mitogen-activated protein kinase pathways regulate a number of transcription factors including c-Fos and c-Jun. Evidence exists, at least from in vitro experiments, that by targeting such pathways, certain dietary compounds may be able to restore abnormal rates of apoptosis and proliferation to more normal levels.


2007 ◽  
Vol 35 (2) ◽  
pp. 288-291 ◽  
Author(s):  
A.G. Rossi ◽  
J.M. Hallett ◽  
D.A. Sawatzky ◽  
M.M. Teixeira ◽  
C. Haslett

Apoptosis of granulocytes and the subsequent clearance of apoptotic cells are important processes for the successful resolution of inflammation. Signalling pathways, including those involving NF-κB (nuclear factor κB), MAPK (mitogen-activated protein kinase) and PI3K (phosphoinositide 3-kinase) have been shown to be key regulators of inflammatory cell survival and apoptosis in vitro. In addition, manipulation of such pathways in vivo has indicated that they also play a role in the resolution of inflammation. Furthermore, manipulation of proteins directly involved in the control of apoptosis, such as Bcl-2 family members and caspases, can be targeted in vivo to influence inflammatory resolution. Recently, it has been shown that CDK (cyclin-dependent kinase) inhibitor drugs induce caspase-dependent human neutrophil apoptosis possibly by altering levels of the anti-apoptotic Bcl-2 family member, Mcl-1. Importantly, CDK inhibitor drugs augment the resolution of established ‘neutrophil-dominant’ inflammation by promoting apoptosis of neutrophils. Thus manipulation of apoptotic pathways, together with ensuring macrophage clearance of apoptotic cells, appears to be a viable pharmacological target for reducing established inflammation.


Sign in / Sign up

Export Citation Format

Share Document