scholarly journals Interplay Between Gut Microbiota and Amino Acid Metabolism in Heart Failure

2021 ◽  
Vol 8 ◽  
Author(s):  
Gulinigaer Tuerhongjiang ◽  
Manyun Guo ◽  
Xiangrui Qiao ◽  
Bowen Lou ◽  
Chen Wang ◽  
...  

Heart failure (HF) is a complex clinical syndrome of which the incidence is on the rise worldwide. Cardiometabolic disorders are associated with the deterioration of cardiac function and progression of HF. Recently, there has been renewed interest in gut microbiota (GM) and its metabolites in the cardiovascular disease. HF-caused hypoperfusion could increase intestinal permeability, and a “leaky” bowel leads to bacterial translocation and make its metabolites more easily enter the circulation. Considerable evidence shows that the composition of microbiota and amino acids (AAs) has been altered in HF patients, and AAs could serve as a diagnostic and prognostic biomarker in HF. The findings indicate that the gut–amino acid–HF axis may play a key role in the progression of HF. In this paper, we focus on the interrelationship between the AA metabolism and GM alterations during the development of heart failure. We also discuss the potential prognostic and therapeutic value of the gut–amino acid–HF axis in the cortex of HF.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhichang Wang ◽  
Jun Hu ◽  
Wenyong Zheng ◽  
Tao Yang ◽  
Xinkai Wang ◽  
...  

Abstract Background Early-weaning of piglets is often accompanied by severe disorders, especially diarrhea. The gut microbiota and its metabolites play a critical role in the maintenance of the physiologic and metabolic homeostasis of the host. Our previous studies have demonstrated that oral administration of Lactobacillus frumenti improves epithelial barrier functions and confers diarrhea resistance in early-weaned piglets. However, the metabolic response to L. frumenti administration remains unclear. Then, we conducted simultaneous serum and hepatic metabolomic analyses in early-weaned piglets administered by L. frumenti or phosphate-buffered saline (PBS). Results A total of 100 6-day-old crossbred piglets (Landrace × Yorkshire) were randomly divided into two groups and piglets received PBS (sterile, 2 mL) or L. frumenti (suspension in PBS, 108 CFU/mL, 2 mL) by oral administration once per day from 6 to 20 days of age. Piglets were weaned at 21 days of age. Serum and liver samples for metabolomic analyses were collected at 26 days of age. Principal components analysis (PCA) showed that L. frumenti altered metabolism in serum and liver. Numerous correlations (P < 0.05) were identified among the serum and liver metabolites that were affected by L. frumenti. Concentrations of guanosine monophosphate (GMP), inosine monophosphate (IMP), and uric acid were higher in serum of L. frumenti administration piglets. Pathway analysis indicated that L. frumenti regulated fatty acid and amino acid metabolism in serum and liver. Concentrations of fatty acid β-oxidation related metabolites in serum (such as 3-hydroxybutyrylcarnitine, C4-OH) and liver (such as acetylcarnitine) were increased after L. frumenti administration. Conclusions Our findings suggest that L. frumenti regulates lipid metabolism and amino acid metabolism in the liver of early-weaned piglets, where it promotes fatty acid β-oxidation and energy production. High serum concentrations of nucleotide intermediates, which may be an alternative strategy to reduce the incidence of diarrhea in early-weaned piglets, were further detected. These findings broaden our understanding of the relationships between the gut microbiota and nutrient metabolism in the early-weaned piglets.


Author(s):  
Chu-wen Ling ◽  
Zelei Miao ◽  
Mian-li Xiao ◽  
Hongwei Zhou ◽  
Zengliang Jiang ◽  
...  

Abstract Context Several small studies have suggested that the gut microbiome might influence osteoporosis, but there is little evidence from human metabolomics studies to explain this association. Objective This study examined the association of gut microbiome dysbiosis with osteoporosis and explored the potential pathways through which this association occurs using faecal and serum metabolomics. Methods We analysed the composition of the gut microbiota by 16S rRNA profiling and bone mineral density (BMD) using dual-energy X-ray absorptiometry in 1776 community-based adults. Targeted metabolomics in faeces (15 categories) and serum (12 categories) were further analysed in 971 participants using ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). Results This study showed that osteoporosis was related to the beta diversity, taxonomy and functional composition of the gut microbiota. The relative abundance of Actinobacillus, Blautia, Oscillospira, Bacteroides and Phascolarctobacterium was positively associated with osteoporosis. However, Veillonellaceae other, Collinsella and Ruminococcaceae other were inversely associated with the presence of osteoporosis. The association between microbiota biomarkers and osteoporosis was related to levels of peptidases and transcription machinery in microbial function. Faecal and serum metabolomics analyses suggested that tyrosine and tryptophan metabolism and valine, leucine and isoleucine degradation were significantly linked to the identified microbiota biomarkers and to osteoporosis, respectively. Conclusion This large population-based study provided robust evidence connecting gut dysbiosis, faecal metabolomics and serum metabolomics with osteoporosis. Our results suggest that gut dysbiosis and amino acid metabolism could be targets for intervention in osteoporosis.


2018 ◽  
Vol 33 (3) ◽  
pp. 3343-3352 ◽  
Author(s):  
Yuko Shigeno ◽  
Haolin Zhang ◽  
Taihei Banno ◽  
Kento Usuda ◽  
Tomonori Nochi ◽  
...  

2020 ◽  
Vol 287 (1922) ◽  
pp. 20192995 ◽  
Author(s):  
Seth D. Newsome ◽  
Kelli L. Feeser ◽  
Christina J. Bradley ◽  
Caitlin Wolf ◽  
Cristina Takacs-Vesbach ◽  
...  

Intestinal microbiota perform many functions for their host, but among the most important is their role in metabolism, especially the conversion of recalcitrant biomass that the host is unable to digest into bioavailable compounds. Most studies have focused on the assistance gut microbiota provide in the metabolism of carbohydrates, however, their role in host amino acid metabolism is poorly understood. We conducted an experiment on Mus musculus using 16S rRNA gene sequencing and carbon isotope analysis of essential amino acids (AA ESS ) to quantify the community composition of gut microbiota and the contribution of carbohydrate carbon used by the gut microbiome to synthesize AA ESS that are assimilated by mice to build skeletal muscle tissue. The relative abundances of Firmicutes and Bacteroidetes inversely varied as a function of dietary macromolecular content, with Firmicutes dominating when mice were fed low-protein diets that contained the highest proportions of simple carbohydrates (sucrose). Mixing models estimated that the microbial contribution of AA ESS to mouse muscle varied from less than 5% (threonine, lysine, and phenylalanine) to approximately 60% (valine) across diet treatments, with the Firmicute-dominated microbiome associated with the greatest contribution. Our results show that intestinal microbes can provide a significant source of the AA ESS their host uses to synthesize structural tissues. The role that gut microbiota play in the amino acid metabolism of animals that consume protein-deficient diets is likely a significant but under-recognized aspect of foraging ecology and physiology.


2020 ◽  
Author(s):  
Chu-wen Ling ◽  
Zelei Miao ◽  
Mian-li Xiao ◽  
Hongwei Zhou ◽  
Zengliang Jiang ◽  
...  

Several small studies suggested gut microbiome might influence osteoporosis, but rare metabolomics evidence from human study had explained the link. This study examined the association of gut microbiome dysbiosis with osteoporosis and explored the potential pathways by using fecal and serum metabolomics.We analyzed gut microbiota compositions by 16S rRNA profiling and bone density (BMD) using a dual-energy X-ray absorptiometry in 1776 community-based adults. Targeted metabolomics in feces (15 categories) and serum (12 categories) were further analyzed in 971 participants with ultra-performance liquid chromatography coupled to tandem mass spectrometry.This study showed osteoporosis was related to gut microbiota beta diversity, taxonomy and functional composition. The relative abundance of Actinobacillus, Blautia, Oscillospira, Bacteroides and Phascolarctobacterium was positively, while Veillonellaceae other, Collinsella and Ruminococcaceae other were inversely, associated with the presence of osteoporosis, which related to higher levels of peptidases and transcription machinery in microbial function. Fecal and serum metabolomics analyses suggested that the tyrosine metabolism and the tryptophan metabolism in feces and the valine, leucine and isoleucine degradation in serum were significantly linked to the identified microbiota biomarkers and osteoporosis.This large population-based study provided the robust evidence connecting gut dysbiosis, fecal and serum metabolomics with osteoporosis. Our results suggested that gut dysbiosis and amino acid metabolism could be potential targets for the intervention of osteoporosis.


2020 ◽  
Author(s):  
Ping-Hsun Wu ◽  
Ting-Yun Lin ◽  
Hsiu J. Ho ◽  
Ching-Hung Tseng ◽  
Yi-Ting Lin ◽  
...  

Abstract Background: Patients with end-stage renal disease (ESRD) have extremely high risks of mortality and morbidity, as well as altered gut microbiota and impaired intestinal barrier function. The translocation of gut-derived molecules in ESRD contributes to systemic complications. In this study, we evaluated the gut microbiome difference in ESRD patients compared to age- and gender-matched subjects without kidney disease in discovery and validation cohorts.Results: Compared to controls with normal renal function, an increased α-diversity and distinct β-diversity were found in ESRD subjects. The increase in α-diversity was correlated with protein-bound uremic toxins, particularly hippuric acid. A higher microbial dysbiosis index (MDI) was found in ESRD patients with the following enriched genera: Facealibacterium, Ruminococcus, Fusobacterium, Dorea, Anaerovorax, Sarcina, Akkemansia, Streptococcus, and Dysgonomonas. MDI at the genus level demonstrated highly differentiated accuracies between ESRD and control subjects in the discovery cohort (area under the curve [AUC] of 81.9%) and between ESRD and control subjects in the validation cohort (AUC of 83.2%). On functional enrichment analysis with gut metabolic modules, ESRD subjects presented with increased saccharide and amino acid metabolism when compared with matched controls.Conclusions: An enriched but dysbiotic gut microbiota was presented in ESRD patients, in which the bacteria that were present increase amino acid metabolism linked to the production of protein-bound uremic toxins.


2017 ◽  
Vol 117 (6) ◽  
pp. 775-783 ◽  
Author(s):  
Takahiro Kawase ◽  
Mao Nagasawa ◽  
Hiromi Ikeda ◽  
Shinobu Yasuo ◽  
Yasuhiro Koga ◽  
...  

AbstractRecently, it has been found that the gut microbiota influences functions of the host brain by affecting monoamine metabolism. The present study focused on the relationship between the gut microbiota and the brain amino acids. Specific pathogen-free (SPF) and germ-free (GF) mice were used as experimental models. Plasma and brain regions were sampled from mice at 7 and 16 weeks of age, and analysed for free d- and l-amino acids, which are believed to affect many physiological functions. At 7 weeks of age, plasma concentrations of d-aspartic acid (d-Asp), l-alanine (l-Ala), l-glutamine (l-Gln) and taurine were higher in SPF mice than in GF mice, but no differences were found at 16 weeks of age. Similar patterns were observed for the concentrations of l-Asp in striatum, cerebral cortex and hippocampus, and l-arginine (l-Arg), l-Ala and l-valine (l-Val) in striatum. In addition, the concentrations of l-Asp, d-Ala, l-histidine, l-isoleucine (l-Ile), l-leucine (l-Leu), l-phenylalanine and l-Val were significantly higher in plasma of SPF mice when compared with those of GF mice. The concentrations of l-Arg, l-Gln, l-Ile and l-Leu were significantly higher in SPF than in GF mice, but those of d-Asp, d-serine and l-serine were higher in some brain regions of GF mice than in those of SPF mice. In conclusion, the concentration of amino acids in the host brain seems to be dependent on presence of the gut microbiota. Amino acid metabolism in the host brain may be modified by manipulating microbiota communities.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xueyuan Yang ◽  
Bangjian Dong ◽  
Lijun An ◽  
Qi Zhang ◽  
Yao Chen ◽  
...  

Accumulating evidences suggested an association between gut microbiome dysbiosis and impaired glycemic control. Ginsenoside Rb1 (Rb1) is a biologically active substance of ginseng, which serves anti-diabetic effects. However, its working mechanism especially interaction with gut microbes remains elusive in detail. In this study, we investigated the impact of Rb1 oral supplementation on high fat diet (HFD) induced obesity mice, and explored its mechanism in regulating blood glucose. The results showed that higher liver weight and lower cecum weight were observed in HFD fed mice, which was maintained by Rb1 administration. In addition, Rb1 ameliorated HFD induced blood lipid abnormality and improved insulin sensitivity. Several mRNA expressions in the liver were measured by quantitative real-time PCR, of which UCP2, Nr1H4, and Fiaf were reversed by Rb1 treatment. 16S rRNA sequencing analysis indicated that Rb1 significantly altered gut microbiota composition and increased the abundance of mucin-degrading bacterium Akkermansia spp. compared to HFD mice. As suggested via functional prediction, amino acid metabolism was modulated by Rb1 supplementation. Subsequent serum amino acids investigation indicated that several diabetes associated amino acids, like branched-chain amino acids, tryptophan and alanine, were altered in company with Rb1 supplementation. Moreover, correlation analysis firstly implied that the circulation level of alanine was related to Akkermansia spp.. In summary, Rb1 supplementation improved HFD induced insulin resistance in mice, and was associated with profound changes in microbial composition and amino acid metabolism.


Amino Acids ◽  
2017 ◽  
Vol 49 (12) ◽  
pp. 2083-2090 ◽  
Author(s):  
Rui Lin ◽  
Wentian Liu ◽  
Meiyu Piao ◽  
Hong Zhu

Sign in / Sign up

Export Citation Format

Share Document