scholarly journals Emerging Role of Long Non-Coding RNAs in Diabetic Vascular Complications

2021 ◽  
Vol 12 ◽  
Author(s):  
Vinay Singh Tanwar ◽  
Marpadga A. Reddy ◽  
Rama Natarajan

Chronic metabolic disorders such as obesity and diabetes are associated with accelerated rates of macrovascular and microvascular complications, which are leading causes of morbidity and mortality worldwide. Further understanding of the underlying molecular mechanisms can aid in the development of novel drug targets and therapies to manage these disorders more effectively. Long non-coding RNAs (lncRNAs) that do not have protein-coding potential are expressed in a tissue- and species-specific manner and regulate diverse biological processes. LncRNAs regulate gene expression in cis or in trans through various mechanisms, including interaction with chromatin-modifying proteins and other regulatory proteins and via posttranscriptional mechanisms, including acting as microRNA sponges or as host genes of microRNAs. Emerging evidence suggests that major pathological factors associated with diabetes such as high glucose, free fatty acids, proinflammatory cytokines, and growth factors can dysregulate lncRNAs in inflammatory, cardiac, vascular, and renal cells leading to altered expression of key inflammatory genes and fibrotic genes associated with diabetic vascular complications. Here we review recent reports on lncRNA characterization, functions, and mechanisms of action in diabetic vascular complications and translational approaches to target them. These advances can provide new insights into the lncRNA-dependent actions and mechanisms underlying diabetic vascular complications and uncover novel lncRNA-based biomarkers and therapies to reduce disease burden and mortality.

Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 527 ◽  
Author(s):  
Sonali Pal ◽  
Manoj Garg ◽  
Amit Kumar Pandey

Amongst the various gynecological malignancies affecting female health globally, ovarian cancer is one of the predominant and lethal among all. The identification and functional characterization of long non-coding RNAs (lncRNAs) are made possible with the advent of RNA-seq and the advancement of computational logarithm in understanding human disease biology. LncRNAs can interact with deoxyribonucleic acid (DNA), ribonucleic acid (RNA), proteins and their combinations. Moreover, lncRNAs regulate orchestra of diverse functions including chromatin organization and transcriptional and post-transcriptional regulation. LncRNAs have conferred their critical role in key biological processes in human cancer including tumor initiation, proliferation, cell cycle, apoptosis, necroptosis, autophagy, and metastasis. The interwoven function of tumor-suppressor protein p53-linked lncRNAs in the ovarian cancer paradigm is of paramount importance. Several lncRNAs operate as p53 regulators or effectors and modulates a diverse array of functions either by participating in various signaling cascades or via interaction with different proteins. This review highlights the recent progress made in the identification of p53 associated lncRNAs while elucidating their molecular mechanisms behind the altered expression in ovarian cancer tumorigenesis. Moreover, the development of novel clinical and therapeutic strategies for targeting lncRNAs in human cancers harbors great promise.


Planta ◽  
2020 ◽  
Vol 252 (5) ◽  
Author(s):  
Li Chen ◽  
Qian-Hao Zhu ◽  
Kerstin Kaufmann

Abstract Main conclusion Long non-coding RNAs modulate gene activity in plant development and stress responses by various molecular mechanisms. Abstract Long non-coding RNAs (lncRNAs) are transcripts larger than 200 nucleotides without protein coding potential. Computational approaches have identified numerous lncRNAs in different plant species. Research in the past decade has unveiled that plant lncRNAs participate in a wide range of biological processes, including regulation of flowering time and morphogenesis of reproductive organs, as well as abiotic and biotic stress responses. LncRNAs execute their functions by interacting with DNA, RNA and protein molecules, and by modulating the expression level of their targets through epigenetic, transcriptional, post-transcriptional or translational regulation. In this review, we summarize characteristics of plant lncRNAs, discuss recent progress on understanding of lncRNA functions, and propose an experimental framework for functional characterization.


2020 ◽  
Vol 11 (SPL4) ◽  
pp. 310-314
Author(s):  
Satya Preethi ◽  
Beeraka Chandra Sekhar ◽  
Pandiyan K R ◽  
Rajkumar R

Diabetes mellitus (DM) is a common metabolic disorder. It is associated with complications which will affect the quality of life. Failure to control elevated blood sugar or inadequate treatment of diabetes could cause many complications.  A prospective observational study is used to assess the prevalence of diabetic vascular complications in 105 types of II diabetic patients. A date was collected regarding patient's demographic and clinical characteristics. Based on our study criteria, males were more when compared to females in getting vascular complications & also. Complications were more prominent in the age group of 50-65years. Of all microvascular complications, Nephropathy was major, whereas, in macro-vascular complications, CAD was prominent. Poor glycemic control and a long length of ailment appear to be the most significant danger factors for these complexities. Doctors assume a significant function to endorse hostile to diabetic meds and Pharmacist plays a sharp task to assess the medicine design so as to accomplish fruitful treatment. The currently anti-diabetic drugs are effective, but a lot of factors such as patient adherence, education related to diabetes, lifestyle modification, cost and type of medication have an association with glycemic control. The commonly prescribed anti-diabetic drug was Insulin. Metformin was the most preferred drug both as monotherapy and combination therapy.  Although polypharmacy was observed, drug utilization pattern can be rational owing to a higher prevalence of complications. Minimization of the occurrence of complications should be courage by early diagnosis, intensive blood glucose control and rational drug selections.


2019 ◽  
Vol 105 (2) ◽  
pp. 453-467
Author(s):  
Amita Bansal ◽  
Nicole Robles-Matos ◽  
Paul Zhiping Wang ◽  
David E Condon ◽  
Apoorva Joshi ◽  
...  

Abstract Context Prenatal exposure to bisphenol A (BPA) is linked to obesity and diabetes but the molecular mechanisms driving these phenomena are not known. Alterations in deoxyribonucleic acid (DNA) methylation in amniocytes exposed to BPA in utero represent a potential mechanism leading to metabolic dysfunction later in life. Objective To profile changes in genome-wide DNA methylation and expression in second trimester human amniocytes exposed to BPA in utero. Design A nested case-control study was performed in amniocytes matched for offspring sex, maternal race/ethnicity, maternal age, gestational age at amniocentesis, and gestational age at birth. Cases had amniotic fluid BPA measuring 0.251 to 23.74 ng/mL. Sex-specific genome-wide DNA methylation analysis and RNA-sequencing (RNA-seq) were performed to determine differentially methylated regions (DMRs) and gene expression changes associated with BPA exposure. Ingenuity pathway analysis was performed to identify biologically relevant pathways enriched after BPA exposure. In silico Hi-C analysis identified potential chromatin interactions with DMRs. Results There were 101 genes with altered expression in male amniocytes exposed to BPA (q < 0.05) in utero, with enrichment of pathways critical to hepatic dysfunction, collagen signaling and adipogenesis. Thirty-six DMRs were identified in male BPA-exposed amniocytes and 14 in female amniocyte analysis (q < 0.05). Hi-C analysis identified interactions between DMRs and 24 genes with expression changes in male amniocytes and 12 in female amniocytes (P < 0.05). Conclusion In a unique repository of human amniocytes exposed to BPA in utero, sex-specific analyses identified gene expression changes in pathways associated with metabolic disease and novel DMRs with potential distal regulatory functions.


2020 ◽  
Vol 115 (5) ◽  
Author(s):  
Naisam Abbas ◽  
Filippo Perbellini ◽  
Thomas Thum

Abstract Soon after birth, the regenerative capacity of the mammalian heart is lost, cardiomyocytes withdraw from the cell cycle and demonstrate a minimal proliferation rate. Despite improved treatment and reperfusion strategies, the uncompensated cardiomyocyte loss during injury and disease results in cardiac remodeling and subsequent heart failure. The promising field of regenerative medicine aims to restore both the structure and function of damaged tissue through modulation of cellular processes and regulatory mechanisms involved in cardiac cell cycle arrest to boost cardiomyocyte proliferation. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) are functional RNA molecules with no protein-coding function that have been reported to engage in cardiac regeneration and repair. In this review, we summarize the current understanding of both the biological functions and molecular mechanisms of ncRNAs involved in cardiomyocyte proliferation. Furthermore, we discuss their impact on the structure and contractile function of the heart in health and disease and their application for therapeutic interventions.


2019 ◽  
Vol 20 (15) ◽  
pp. 3737 ◽  
Author(s):  
Kenichi Goto ◽  
Takanari Kitazono

Diabetes mellitus is one of the major risk factors for cardiovascular disease and is an important health issue worldwide. Long-term diabetes causes endothelial dysfunction, which in turn leads to diabetic vascular complications. Endothelium-derived nitric oxide is a major vasodilator in large-size vessels, and the hyperpolarization of vascular smooth muscle cells mediated by the endothelium plays a central role in agonist-mediated and flow-mediated vasodilation in resistance-size vessels. Although the mechanisms underlying diabetic vascular complications are multifactorial and complex, impairment of endothelium-dependent hyperpolarization (EDH) of vascular smooth muscle cells would contribute at least partly to the initiation and progression of microvascular complications of diabetes. In this review, we present the current knowledge about the pathophysiology and underlying mechanisms of impaired EDH in diabetes in animals and humans. We also discuss potential therapeutic approaches aimed at the prevention and restoration of EDH in diabetes.


2014 ◽  
Vol 369 (1652) ◽  
pp. 20130504 ◽  
Author(s):  
Neil R. Smalheiser

If mRNAs were the only RNAs made by a neuron, there would be a simple mapping of mRNAs to proteins. However, microRNAs and other non-coding RNAs (ncRNAs; endo-siRNAs, piRNAs, BC1, BC200, antisense and long ncRNAs, repeat-related transcripts, etc.) regulate mRNAs via effects on protein translation as well as transcriptional and epigenetic mechanisms. Not only are genes ON or OFF, but their ability to be translated can be turned ON or OFF at the level of synapses, supporting an enormous increase in information capacity. Here, I review evidence that ncRNAs are expressed pervasively within dendrites in mammalian brain; that some are activity-dependent and highly enriched near synapses; and that synaptic ncRNAs participate in plasticity responses including learning and memory. Ultimately, ncRNAs can be viewed as the post-it notes of the neuron. They have no literal meaning of their own, but derive their functions from where (and to what) they are stuck. This may explain, in part, why ncRNAs differ so dramatically from protein-coding genes, both in terms of the usual indicators of functionality and in terms of evolutionary constraints. ncRNAs do not appear to be direct mediators of synaptic transmission in the manner of neurotransmitters or receptors, yet they orchestrate synaptic plasticity—and may drive species-specific changes in cognition.


Open Biology ◽  
2017 ◽  
Vol 7 (6) ◽  
pp. 170073 ◽  
Author(s):  
Joana Guiro ◽  
Shona Murphy

In addition to protein-coding genes, RNA polymerase II (pol II) transcribes numerous genes for non-coding RNAs, including the small-nuclear (sn)RNA genes. snRNAs are an important class of non-coding RNAs, several of which are involved in pre-mRNA splicing. The molecular mechanisms underlying expression of human pol II-transcribed snRNA genes are less well characterized than for protein-coding genes and there are important differences in expression of these two gene types. Here, we review the DNA features and proteins required for efficient transcription of snRNA genes and co-transcriptional 3′ end formation of the transcripts.


2010 ◽  
Vol 1 (3) ◽  
pp. 77-89 ◽  
Author(s):  
Munehiro Kitada ◽  
Zhaoyun Zhang ◽  
Akira Mima ◽  
George L King

2021 ◽  
Vol 22 (6) ◽  
pp. 3280
Author(s):  
Dana Dvorská ◽  
Dušan Braný ◽  
Marcela Ňachajová ◽  
Erika Halašová ◽  
Zuzana Danková

Breast cancer is very heterogenous and the most common gynaecological cancer, with various factors affecting its development. While its impact on human lives and national health budgets is still rising in almost all global areas, many molecular mechanisms affecting its onset and development remain unclear. Conventional treatments still prove inadequate in some aspects, and appropriate molecular therapeutic targets are required for improved outcomes. Recent scientific interest has therefore focused on the non-coding RNAs roles in tumour development and their potential as therapeutic targets. These RNAs comprise the majority of the human transcript and their broad action mechanisms range from gene silencing to chromatin remodelling. Many non-coding RNAs also have altered expression in breast cancer cell lines and tissues, and this is often connected with increased proliferation, a degraded extracellular environment, and higher endothelial to mesenchymal transition. Herein, we summarise the known abnormalities in the function and expression of long non-coding RNAs, Piwi interacting RNAs, small nucleolar RNAs and small nuclear RNAs in breast cancer, and how these abnormalities affect the development of this deadly disease. Finally, the use of RNA interference to suppress breast cancer growth is summarised.


Sign in / Sign up

Export Citation Format

Share Document