scholarly journals Tissue Hydrogen Peroxide Concentration Can Explain the Invasiveness of Aquatic Macrophytes: A Modeling Perspective

2021 ◽  
Vol 8 ◽  
Author(s):  
Takashi Asaeda ◽  
Md Harun Rashid ◽  
Jonas Schoelynck

In recent years, an invasive macrophyte, Egeria densa, has overwhelmingly colonized some midstream reaches of Japanese rivers. This study was designed to determine how E. densa has been able to colonize these areas and to assess the environmental conditions that limit or even prevent colonization. Invasive species (E. densa and Elodea nuttallii), and Japanese native species (Myriophyllum spicatum, Ceratophyllum demersum, and Potamogeton crispuss) were kept in experimental tanks and a flume with different environmental conditions. Tissue hydrogen peroxide (H2O2) concentrations were measured responding to either individual or multiple environmental factors of light intensity, water temperature, and water flow velocity. In addition, plants were sampled in rivers across Japan, and environmental conditions were measured. The H2O2 concentration increased in parallel to the increment of unpreferable levels of each abiotic factor, and the trend was independent of other factors. The total H2O2 concentration is provided by the sum of contribution of each factor. Under increased total H2O2 concentration, plants first started to decrease in chlorophyll concentration, then reduce their growth rate, and subsequently reduce their biomass. The H2O2 concentration threshold, beyond which degradation is initiated, was between 15 and 20 µmol/gFW regardless of the environmental factors. These results highlight the potential efficacy of total H2O2 concentration as a proxy for the overall environmental condition. In Japanese rivers, major environmental factors limiting macrophyte colonization were identified as water temperature, high solar radiation, and flow velocity. The relationship between the unpreferable levels of these factors and H2O2 concentration was empirically obtained for these species. Then a mathematical model was developed to predict the colonization area of these species with environmental conditions. The tissue H2O2 concentration decreases with increasing temperature for E. densa and increases for other species, including native species. Therefore, native species grow intensively in spring; however, they often deteriorate in summer. For E. densa, on the other hand, H2O2 concentration decreases with high water temperature in summer, allowing intensive growth. High solar radiation increases the H2O2 concentration, deteriorating the plant. Although the H2O2 concentration of E. densa increases with low water temperature in winter, it can survive in deep water with low H2O2 concentration due to diffused solar radiation. Currently, river rehabilitation has created a deep zone in the channel, which supports the growth and spreading of E. densa.

2015 ◽  
Vol 17 (1) ◽  
pp. 143-150
Author(s):  
Ronald Eleazar Huarachi Olivera ◽  
Ursulo Avelino Yapo Pari ◽  
Alex Paul Dueñas Gonza ◽  
Jose Condori Huamanga ◽  
David Pacheco Salazar ◽  
...  

<p><strong>Título en ingles: Cultivation of <em>Arthrospira platensis</em> (Spirulina) in curved</strong> <strong>doubly tubular photobioreactor to environmental conditions in the South of the Peru</strong><strong></strong><strong></strong></p><p><strong>Título corto: </strong><strong>Cultivo de <em>Arthrospira platensis </em>(Spirulina) en fotobiorreactor</strong></p><p><strong>Resumen: </strong>El presente trabajo investigó el cultivo de la microalga <em>Arthrospira platensis</em> (Spirulina) en valores de productividad cultivado en fotobiorreactor tubular doblemente curvado a condiciones ambientales con el fin de aprovechar la alta radiación solar de la región Arequipa en el sur de Perú (16°24´50´´ LS; 71°32´02´´ LO; 2344 msnm). El fotobiorreactor fue construido con un tubo transparente de policloruro de vinilo  (PVC). La productividad del cultivo fue de 13.9 g/m<sup>2</sup> en 14 días ó 1 g/m<sup>2</sup>/día y una concentración de clorofila - “a” de 0.00785 mg/L con una máxima radiación de 1179 W/m<sup>2</sup>, y una iluminación de 121500 lux, convirtiendo sus filamentos helicoidales a morfologías anormales, tales como formas irregulares curvas e incluso lineales con fragmentaciones, demostrando que el cultivo se vio afectado por la alta radiación y las variaciones de  temperaturas de Arequipa.</p><p><strong>Palabras clave:</strong> cultivo, fotobiorreactor, productividad, sur de Perú, Spirulina.</p><p><strong>Abstract: </strong>The present work investigated the cultivation of microalgae <em>Arthrospira platensis</em> (Spirulina) in productivity values cultivated in doubly curved tubular photobioreactor to environmental conditions in order to take advantage of the high solar radiation of the Arequipa region in southern Peru (16°24´50´´ LS; 71°32´02´´LW; 2344 msnm.). The photobioreactor was built with a transparent tube of polyvinyl chloride (PVC). The productivity of the crop was 13.9 g/m<sup>2</sup> in 14 days or 1 g/m<sup>2</sup>/day and a concentration of chlorophyll - "a" 0.00785 mg/L with a maximum radiation of 1179 W/m<sup>2</sup>, and a 121500 lux illumination, making its helical filaments abnormal morphologies, such as curves and linear even irregular shapes with fragmentation, demonstrating that the crop was affected by high radiation and variations in temperatures of Arequipa.</p><p><strong>Key words:</strong> culture, photobioreactor, productivity, South of Peru, Spirulina.</p><p><strong>Recibido:</strong> enero 22 de 2015<strong>  Aprobado: </strong>abril 22 de 2015</p>


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1847
Author(s):  
Olena Sobko ◽  
Andreas Stahl ◽  
Volker Hahn ◽  
Sabine Zikeli ◽  
Wilhelm Claupein ◽  
...  

The cultivation area of soybean (Glycine max (L.) Merr) is increasing in Germany as a way to ensure self-sufficiency through its use as feed and food. However, climatic conditions needed for soybean cultivation are not appropriate in all parts of the country. The objective of this study was to determine the influence of solar radiation, temperature, and precipitation on soybean seed productivity and quality in central and south Germany. A multi-factorial field trial was carried out with three replicates at four locations in 2016 and five locations in 2017, testing 13 soybean varieties from the maturity groups MG 00 and MG 000. Considering all the tested factors, “variety” was highly significant concerning protein content (Ø 41.1% dry matter (DM)) and oil content (Ø 19.1% in DM), but not seed yield (Ø 40.5 dt ha−1).The broad sense heritability of protein content was H2 = 0.80 and of oil content H2 = 0.7. Protein and oil content were significantly negatively correlated (r = −0.82). Seed yield was significantly positively correlated with solar radiation (r = 0.32) and precipitation (r = 0.33), but significantly negatively with Crop Heat Units (CHU) (r = −0.42). Over both experimental years, varieties from maturity group MG 00 were less significantly correlated with the tested environmental factors than varieties from maturity group MG 000. None of the environmental factors tested significantly increased the protein or oil content of soybean. In growing areas with heat periods during ripening, protein content tended to be higher than in cooler areas; in areas with high solar radiation during flowering, protein content tended to be reduced.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Abdul Haris Subarjo ◽  
Benedictus Mardwianta ◽  
Anugrah Budi Wicaksono

Radiasi matahari menghasilkan kalor sebagai sumber energi yang dapat dikumpulkan menjadi satu titik sehingga mampu untuk memasak air menggunakan alat bernama Reflektor cermin parabolic. Untuk memperbesar perpindahan kalor menyeluruh (Qm) maka dipilih bahan reflector yang mudah memantulkan sinar matahari. Tujuan yang dilakukan pada penelitian ini adalah untuk mengetahui daya dan efisiensi termal kolektor pada kompor tenaga surya. Metodologi penelitian ini dengan cara pengambilan data dengan parameter waktu yang sudah ditentukan sesuai kondisi  lingkungan untuk memanaskan air 1000 gram. Subyek penelitian ini adalah parabolic solar cooker dengan diameter 84 cm. Hasil daya kompor yang diperoleh sebesar 36,59 Watt dan efisiensi termal kompor sebesar 6,18 %. Daya kompor dipengaruhi oleh selisih temperatur air setelah dipanaskan dengan temperatur air sebelum dipanaskan. Semakin besar temperatur air setelah dipanaskan maka akan memperbesar daya kompor tersebut. Semakin besar perpindahan kalor menyeluruh Qm dan semakin kecil intensitas radiasi matahari pada reflector yang menggunakan cermin maka efisiensi termal semakin besar.Kata kunci: kompor parabola tenaga surya, daya kompor, efisiensi termalABSTRACTSolar radiation generates the heat as a source of energy that can be collected into a single point so that it is able to cook water using a tool named mirror parabolic reflector. To enlarge the whole heat transfer (QM) then selected reflector material that easily reflects the sunlight. The purpose of this study is to find out the power and efficiency of thermal collectors on solar power stoves. This research methodology by means of data retrieval with specified time parameters according to environmental conditions to heat water 1000 grams. The subject of this study is the parabolic solar cooker with a diameter of 84 cm. Results of stove Power obtained at 36.59 Watt and thermal efficiency of the stove amounted to 6.18%. The cooker's power is influenced by the water temperature difference after heated with water temperature before heated. The larger the water temperature after heated it will enlarge the stove's power. The larger the overall heat transfer of the Qm and the smaller the intensity of the solar radiation on the reflector using the mirror hence the greater the thermal efficiency.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. D. Robertson ◽  
J. Gao ◽  
P. M. Regular ◽  
M. J. Morgan ◽  
F. Zhang

AbstractAnomalous local temperature and extreme events (e.g. heat-waves) can cause rapid change and gradual recovery of local environmental conditions. However, few studies have tested whether species distribution can recover following returning environmental conditions. Here, we tested for change and recovery of the spatial distributions of two flatfish populations, American plaice (Hippoglossoides platessoides) and yellowtail flounder (Limanda ferruginea), in response to consecutive decreasing and increasing water temperature on the Grand Bank off Newfoundland, Canada from 1985 to 2018. Using a Vector Autoregressive Spatiotemporal model, we found the distributions of both species shifted southwards following a period when anomalous cold water covered the northern sections of the Grand Bank. After accounting for density-dependent effects, we observed that yellowtail flounder re-distributed northwards when water temperature returned and exceeded levels recorded before the cold period, while the spatial distribution of American plaice has not recovered. Our study demonstrates nonlinear effects of an environmental factor on species distribution, implying the possibility of irreversible (or hard-to-reverse) changes of species distribution following a rapid change and gradual recovery of environmental conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel Ruiz Potma Gonçalves ◽  
Umakant Mishra ◽  
Skye Wills ◽  
Sagar Gautam

AbstractUnderstanding the influence of environmental factors on soil organic carbon (SOC) is critical for quantifying and reducing the uncertainty in carbon climate feedback projections under changing environmental conditions. We explored the effect of climatic variables, land cover types, topographic attributes, soil types and bedrock geology on SOC stocks of top 1 m depth across conterminous United States (US) ecoregions. Using 4559 soil profile observations and high-resolution data of environmental factors, we identified dominant environmental controllers of SOC stocks in 21 US ecoregions using geographically weighted regression. We used projected climatic data of SSP126 and SSP585 scenarios from GFDL-ESM 4 Earth System Model of Coupled Model Intercomparison Project phase 6 to predict SOC stock changes across continental US between 2030 and 2100. Both baseline and predicted changes in SOC stocks were compared with SOC stocks represented in GFDL-ESM4 projections. Among 56 environmental predictors, we found 12 as dominant controllers across all ecoregions. The adjusted geospatial model with the 12 environmental controllers showed an R2 of 0.48 in testing dataset. Higher precipitation and lower temperatures were associated with higher levels of SOC stocks in majority of ecoregions. Changes in land cover types (vegetation properties) was important in drier ecosystem as North American deserts, whereas soil types and topography were more important in American prairies. Wetlands of the Everglades was highly sensitive to projected temperature changes. The SOC stocks did not change under SSP126 until 2100, however SOC stocks decreased up to 21% under SSP585. Our results, based on environmental controllers of SOC stocks, help to predict impacts of changing environmental conditions on SOC stocks more reliably and may reduce uncertainties found in both, geospatial and Earth System Models. In addition, the description of different environmental controllers for US ecoregions can help to describe the scope and importance of global and local models.


2021 ◽  
Vol 7 (4) ◽  
pp. 726-738
Author(s):  
Seyyed M. H. Abtahi ◽  
Ojaswi Aryal ◽  
Niveen S. Ismail

Zooplankton can significantly impact E. coli inactivation in wastewater, but inactivation rates are dependent on environmental conditions.


2013 ◽  
Vol 30 (7) ◽  
pp. 1576-1582 ◽  
Author(s):  
S. J. Lentz ◽  
J. H. Churchill ◽  
C. Marquette ◽  
J. Smith

Abstract Onset's HOBO U22 Water Temp Pros are small, reliable, relatively inexpensive, self-contained temperature loggers that are widely used in studies of oceans, lakes, and streams. An in-house temperature bath calibration of 158 Temp Pros indicated root-mean-square (RMS) errors ranging from 0.01° to 0.14°C, with one value of 0.23°C, consistent with the factory specifications. Application of a quadratic calibration correction substantially reduced the RMS error to less than 0.009°C in all cases. The primary correction was a bias error typically between −0.1° and 0.15°C. Comparison of water temperature measurements from Temp Pros and more accurate temperature loggers during two oceanographic studies indicates that calibrated Temp Pros have an RMS error of ~0.02°C throughout the water column at night and beneath the surface layer influenced by penetrating solar radiation during the day. Larger RMS errors (up to 0.08°C) are observed near the surface during the day due to solar heating of the black Temp Pro housing. Errors due to solar heating are significantly reduced by wrapping the housing with white electrical tape.


Author(s):  
Henglong Xu ◽  
Yong Jiang ◽  
Wei Zhang ◽  
Mingzhuang Zhu ◽  
Khaled A. S. Al-Rasheid ◽  
...  

The annual variations in body-size spectra of planktonic ciliate communities and their relationships to environmental conditions were studied based on a 12-month dataset (June 2007 to May 2008) from Jiaozhou Bay on the Yellow Sea coast of northern China. Based on the dataset, the body sizes of the ciliates, expressed as equivalent spherical diameters, included five ranks: S1 (5–35 μm); S2 (35–55 μm); S3 (55–75 μm); S4 (75–100 μm); and S5 (100–350 μm). These body-size ranks showed a clear temporal succession of dominance in the order of S2 (January–April) → S1 (May–July) → S4 (August–September) → S3 (October–December). Multivariate analyses showed that the temporal variations in their body-size patterns were significantly correlated with changes in environmental conditions, especially water temperature, salinity, dissolved oxygen concentration (DO) and nutrients. In terms of abundance, rank S2 was significantly correlated with water temperature, DO and nutrients, whereas ranks S4 and S5 were correlated with the salinity and nutrients respectively (P < 0.05). These results suggest that the body-size patterns of planktonic ciliate communities showed a clear temporal pattern during an annual cycle and significantly associated with environmental conditions in marine ecosystems.


2017 ◽  
Vol 12 (1) ◽  
pp. 87-96 ◽  
Author(s):  
J. S. Hyung ◽  
K. B. Kim ◽  
M. C. Kim ◽  
I. S. Lee ◽  
J. Y. Koo

Ozone dosage in most water treatment plants is operated by determining the ozone concentration with the experience of the operation. In this case, it is not economical. This study selected the factors affecting residual ozone concentration and attempted to estimate the optimum amount of hydrogen peroxide dosage for the control of the residual ozone concentration by developing a model for the prediction of the residual ozone concentration. The prediction formulas developed in this study can quickly respond to the environment of water quality and surrounding environmental factors, which change in real time, so it is judged that they could be used for the operation of the optimum ozone process, and the control of ozone dosage could be used as a new method in controlling the concentration of ozone dosage and the concentration of residual ozone.


Sign in / Sign up

Export Citation Format

Share Document