scholarly journals Single Independent Autopolyploidization Events From Distinct Diploid Gene Pools and Residual Sexuality Support Range Expansion of Locally Adapted Tetraploid Genotypes in a South American Grass

2021 ◽  
Vol 12 ◽  
Author(s):  
Piyal Karunarathne ◽  
Diego Hojsgaard

Polyploidy plays a major role in plant evolution. The establishment of new polyploids is often a consequence of a single or few successful polyploidization events occurring within a species’ evolutionary trajectory. New polyploid lineages can play different roles in plant diversification and go through several evolutionary stages influenced by biotic and abiotic constraints and characterized by extensive genetic changes. The study of such changes has been crucial for understanding polyploid evolution. Here, we use the multiploid-species Paspalum intermedium to study population-level genetic and morphological variation and ecological differentiation in polyploids. Using flow cytometry, amplified fragment length polymorphism (AFLP) genetic markers, environmental variables, and morphological data, we assessed variations in ploidy, reproductive modes, and the genetic composition in 35 natural populations of P. intermedium along a latitudinal gradient in South America. Our analyses show that apomictic auto-tetraploids are of multiple independent origin. While overall genetic variation was higher in diploids, both diploids and tetraploids showed significant variation within and among populations. The spatial distribution of genetic variation provides evidence for a primary origin of the contact zone between diploids and tetraploids and further supports the hypothesis of geographic displacement between cytotypes. In addition, a strong link between the ecological differentiation of cytotypes and spatial distribution of genetic variation was observed. Overall, the results indicate that polyploidization in P. intermedium is a recurrent phenomenon associated to a shift in reproductive mode and that multiple polyploid lineages from genetically divergent diploids contributed to the successful establishment of local polyploid populations and dispersal into new environments.

Agronomy ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 119 ◽  
Author(s):  
Petr Smýkal ◽  
Matthew Nelson ◽  
Jens Berger ◽  
Eric Von Wettberg

Humans have domesticated hundreds of plant and animal species as sources of food, fiber, forage, and tools over the past 12,000 years, with manifold effects on both human society and the genetic structure of the domesticated species. The outcomes of crop domestication were shaped by selection driven by human preferences, cultivation practices, and agricultural environments, as well as other population genetic processes flowing from the ensuing reduction in effective population size. It is obvious that any selection imposes a reduction of diversity, favoring preferred genotypes, such as nonshattering seeds or increased palatability. Furthermore, agricultural practices greatly reduced effective population sizes of crops, allowing genetic drift to alter genotype frequencies. Current advances in molecular technologies, particularly of genome sequencing, provide evidence of human selection acting on numerous loci during and after crop domestication. Population-level molecular analyses also enable us to clarify the demographic histories of the domestication process itself, which, together with expanded archaeological studies, can illuminate the origins of crops. Domesticated plant species are found in 160 taxonomic families. Approximately 2500 species have undergone some degree of domestication, and 250 species are considered to be fully domesticated. The evolutionary trajectory from wild to crop species is a complex process. Archaeological records suggest that there was a period of predomestication cultivation while humans first began the deliberate planting of wild stands that had favorable traits. Later, crops likely diversified as they were grown in new areas, sometimes beyond the climatic niche of their wild relatives. However, the speed and level of human intentionality during domestication remains a topic of active discussion. These processes led to the so-called domestication syndrome, that is, a group of traits that can arise through human preferences for ease of harvest and growth advantages under human propagation. These traits included reduced dispersal ability of seeds and fruits, changes to plant structure, and changes to plant defensive characteristics and palatability. Domestication implies the action of selective sweeps on standing genetic variation, as well as new genetic variation introduced via mutation or introgression. Furthermore, genetic bottlenecks during domestication or during founding events as crops moved away from their centers of origin may have further altered gene pools. To date, a few hundred genes and loci have been identified by classical genetic and association mapping as targets of domestication and postdomestication divergence. However, only a few of these have been characterized, and for even fewer is the role of the wild-type allele in natural populations understood. After domestication, only favorable haplotypes are retained around selected genes, which creates a genetic valley with extremely low genetic diversity. These “selective sweeps” can allow mildly deleterious alleles to come to fixation and may create a genetic load in the cultivated gene pool. Although the population-wide genomic consequences of domestication offer several predictions for levels of the genetic diversity in crops, our understanding of how this diversity corresponds to nutritional aspects of crops is not well understood. Many studies have found that modern cultivars have lower levels of key micronutrients and vitamins. We suspect that selection for palatability and increased yield at domestication and during postdomestication divergence exacerbated the low nutrient levels of many crops, although relatively little work has examined this question. Lack of diversity in modern germplasm may further limit our capacity to breed for higher nutrient levels, although little effort has gone into this beyond a handful of staple crops. This is an area where an understanding of domestication across many crop taxa may provide the necessary insight for breeding more nutritious crops in a rapidly changing world.


2020 ◽  
Author(s):  
Juannan Zhou ◽  
Charles B. Fenste ◽  
Richard J. Reynolds

AbstractThe amount of genetic variation of floral traits and the degree to which they are genetically correlated are important parameters for the study of plant evolution. Estimates of these parameters can reveal the effect of historical selection relative to neutral processes such as mutation and drift, and allow us to predict the short-term evolutionary trajectory of a population under various selective regimes. Here, we assess the heritability and genetic correlation of the floral design of a native N. American tetraploid plant, Silene stellata (Caryophyllaceae), in a natural population. Specifically, we use a linear mixed model to estimate the genetic parameters based on a genealogy reconstructed from highly variable molecular markers. Overall, we found significant heritabilities in five out of nine studied traits. The level of heritability was intermediate (0.027 – 0.441). Interestingly, the floral trait showing the highest level of genetic variation was previously shown to be under strong sexually conflicting selection, which may serve as a mechanism for maintaining the observed genetic variation. Additionally, we also found prevalent positive genetic correlations between floral traits. Our results suggest that S. stellata is capable of responding to phenotypic selection on its floral design, while the abundant positive genetic correlations could also constrain the evolutionary trajectories to certain directions. Furthermore, this study demonstrates the utility and feasibility of marker-based approaches for estimating genetic parameters in natural populations.


Rice ◽  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Ai-ling Hour ◽  
Wei-hsun Hsieh ◽  
Su-huang Chang ◽  
Yong-pei Wu ◽  
Han-shiuan Chin ◽  
...  

Abstract Background Rice, the most important crop in Asia, has been cultivated in Taiwan for more than 5000 years. The landraces preserved by indigenous peoples and brought by immigrants from China hundreds of years ago exhibit large variation in morphology, implying that they comprise rich genetic resources. Breeding goals according to the preferences of farmers, consumers and government policies also alter gene pools and genetic diversity of improved varieties. To unveil how genetic diversity is affected by natural, farmers’, and breeders’ selections is crucial for germplasm conservation and crop improvement. Results A diversity panel of 148 rice accessions, including 47 cultivars and 59 landraces from Taiwan and 42 accessions from other countries, were genotyped by using 75 molecular markers that revealed an average of 12.7 alleles per locus with mean polymorphism information content of 0.72. These accessions could be grouped into five subpopulations corresponding to wild rice, japonica landraces, indica landraces, indica cultivars, and japonica cultivars. The genetic diversity within subpopulations was: wild rices > landraces > cultivars; and indica rice > japonica rice. Despite having less variation among cultivars, japonica landraces had greater genetic variation than indica landraces because the majority of Taiwanese japonica landraces preserved by indigenous peoples were classified as tropical japonica. Two major clusters of indica landraces were formed by phylogenetic analysis, in accordance with immigration from two origins. Genetic erosion had occurred in later japonica varieties due to a narrow selection of germplasm being incorporated into breeding programs for premium grain quality. Genetic differentiation between early and late cultivars was significant in japonica (FST = 0.3751) but not in indica (FST = 0.0045), indicating effects of different breeding goals on modern germplasm. Indigenous landraces with unique intermediate and admixed genetic backgrounds were untapped, representing valuable resources for rice breeding. Conclusions The genetic diversity of improved rice varieties has been substantially shaped by breeding goals, leading to differentiation between indica and japonica cultivars. Taiwanese landraces with different origins possess various and unique genetic backgrounds. Taiwanese rice germplasm provides diverse genetic variation for association mapping to unveil useful genes and is a precious genetic reservoir for rice improvement.


2017 ◽  
Vol 15 (1) ◽  
Author(s):  
Alan Bonner ◽  
Michelle R. Duarte ◽  
Rosa C. C. L. Souza ◽  
Cassiano Monteiro-Neto ◽  
Edson P. Silva

ABSTRACT Two Coryphaena hippurus morphotypes (dourado and palombeta) are found along the Brazilian coast and are considered by Rio de Janeiro’s fisherman and fishmongers as two different species. Furthermore, these morphotypes are commercialized under different values and suffer different fishing pressure. Therefore, a definition of their taxonomic status is an important economic and biological matter. In order to investigate this problem, allozyme electrophoresis method was undertaken for seventeen loci on 117 individuals of C. hippurus sampled at Cabo Frio/RJ (Brazil). The data indicate homogeneity between the morphotypes gene pools. Nevertheless, differences were found for genetic variation among dourado and palombeta, especially due to alcohol dehydrogenase locus. Natural selection hypothesis is discussed in explaining these findings.


2020 ◽  
Vol 125 (6) ◽  
pp. 969-980 ◽  
Author(s):  
Silvia Matesanz ◽  
Marina Ramos-Muñoz ◽  
Mario Blanco-Sánchez ◽  
Adrián Escudero

Abstract Background and Aims Plants experiencing contrasting environmental conditions may accommodate such heterogeneity by expressing phenotypic plasticity, evolving local adaptation or a combination of both. We investigated patterns of genetic differentiation and plasticity in response to drought in populations of the gypsum specialist Lepidium subulatum. Methods We created an outdoor common garden with rain exclusion structures using 60 maternal progenies from four distinct populations that substantially differ in climatic conditions. We characterized fitness, life history and functional plasticity in response to two contrasting treatments that realistically reflect soil moisture variation in gypsum habitats. We also assessed neutral genetic variation and population structure using microsatellite markers. Key Results In response to water stress, plants from all populations flowered earlier, increased allocation to root tissues and advanced leaf senescence, consistent with a drought escape strategy. Remarkably, these probably adaptive responses were common to all populations, as shown by the lack of population × environment interaction for almost all functional traits. This generally common pattern of response was consistent with substantial neutral genetic variation and large differences in population trait means. However, such population-level trait variation was not related to climatic conditions at the sites of origin. Conclusions Our results show that, rather than ecotypes specialized to local climatic conditions, these populations are composed of highly plastic, general-purpose genotypes in relation to climatic heterogeneity. The strikingly similar patterns of plasticity among populations, despite substantial site of origin differences in climate, suggest past selection on a common norm of reaction due to similarly high levels of variation within sites. It is thus likely that plasticity will have a prevalent role in the response of this soil specialist to further environmental change.


2003 ◽  
Vol 1 (1) ◽  
pp. 11-18 ◽  
Author(s):  
M. O. Humphreys

AbstractUK agriculture is undergoing significant change with reduced subsidies for food production, increasing consumer demands for food safety and traceability, and environmental concerns including climate and demographic change. The International Treaty on Plant Genetic Resources for Food and Agriculture adopted by the United Nations Food and Agriculture Organisation supports the use of genetic resources for research and breeding. Mining genetic resources for useful genetic variation is perceived as a major benefit of genebanks. However, utilization by breeders may be constrained by poor characterization of genetic resources, a widening gap between improved and unimproved material, and the disruption of well- adapted genotypes during introgression. Breeders working with grasses and forage legumes for sustainable agriculture are fortunate in the wealth of genetic variation available both within the primary species of interest and among related species. New DNA technologies allow more targeted approaches to the use of these genetic resources. Possibilities for gene transfer between related species using conventional techniques expand the available gene pools while potential use of genetic transformation extend these even further.


2019 ◽  
Vol 50 (1) ◽  
pp. 477-502 ◽  
Author(s):  
Anton Pauw

Nectarivorous birds and bird-pollinated plants are linked by a network of interactions. Here I ask how these interactions influence evolution and community composition. I find near complete evidence for the effect of birds on plant evolution. Experiments show the process in action—birds select among floral phenotypes in a population—and comparative studies find the resulting pattern—bird-pollinated species have long-tubed, red flowers with large nectar volumes. Speciation is accomplished in one “magical” step when adaptation for bird pollination brings about divergent morphology and reproductive isolation. In contrast, evidence that plants drive bird evolution is fragmentary. Studies of selection on population-level variation are lacking, but the resulting pattern is clear—nectarivorous birds have evolved a remarkable number of times and often have long bills and brush-tipped or tubular tongues. At the level of the ecological guild, birds select among plant species via an effect on seed set and thus determine plant community composition. Plants simultaneously influence the relative fitness of bird species and thus determine the composition of the bird guild. Interaction partners may give one guild member a constant fitness advantage, resulting in competitive exclusion and community change, or may act as limiting resources that depress the fitness of frequent species, thus stabilizing community composition and allowing the coexistence of diversity within bird and plant guilds.


2020 ◽  
Vol 35 (5) ◽  
pp. 452-464
Author(s):  
Päivi H. Leinonen ◽  
Matti J. Salmela ◽  
Kathleen Greenham ◽  
C. Robertson McClung ◽  
John H. Willis

Environmental variation along an elevational gradient can yield phenotypic differentiation resulting from varying selection pressures on plant traits related to seasonal responses. Thus, genetic clines can evolve in a suite of traits, including the circadian clock, that drives daily cycling in varied traits and that shares its genetic background with adaptation to seasonality. We used populations of annual Mimulus laciniatus from different elevations in the Sierra Nevada in California to explore among-population differentiation in the circadian clock, flowering responses to photoperiod, and phenological traits (days to cotyledon emergence, days to flowering, and days to seed ripening) in controlled common-garden conditions. Further, we examined correlations of these traits with environmental variables related to temperature and precipitation. We observed that the circadian period in leaf movement was differentiated among populations sampled within about 100 km, with population means varying by 1.6 h. Significant local genetic variation occurred within 2 populations in which circadian period among families varied by up to 1.8 h. Replicated treatments with variable ecologically relevant photoperiods revealed marked population differentiation in critical day length for flowering that ranged from 11.0 to 14.1 h, corresponding to the time period between late February and mid-May in the wild. Flowering time varied among populations in a 14-h photoperiod. Regardless of this substantial population-level diversity, obvious linear clinality in trait variability across elevations could not be determined based on our genotypic sample; it is possible that more complex spatial patterns of variation arise in complex terrains such as those in the Sierra Nevada. Moreover, we did not find statistically significant bivariate correlations between population means of different traits. Our research contributes to the understanding of genetic variation in the circadian clock and in seasonal responses in natural populations, highlighting the need for more comprehensive investigations on the association between the clock and other adaptive traits in plants.


Sign in / Sign up

Export Citation Format

Share Document