scholarly journals Targeting Epigenetics and Non-coding RNAs in Myocardial Infarction: From Mechanisms to Therapeutics

2021 ◽  
Vol 12 ◽  
Author(s):  
Jinhong Chen ◽  
Zhichao Liu ◽  
Li Ma ◽  
Shengwei Gao ◽  
Huanjie Fu ◽  
...  

Myocardial infarction (MI) is a complicated pathology triggered by numerous environmental and genetic factors. Understanding the effect of epigenetic regulation mechanisms on the cardiovascular disease would advance the field and promote prophylactic methods targeting epigenetic mechanisms. Genetic screening guides individualised MI therapies and surveillance. The present review reported the latest development on the epigenetic regulation of MI in terms of DNA methylation, histone modifications, and microRNA-dependent MI mechanisms and the novel therapies based on epigenetics.

2020 ◽  
Vol 21 (10) ◽  
pp. 3666
Author(s):  
Priscilla R. Prestes ◽  
Michelle C. Maier ◽  
Bradley A. Woods ◽  
Fadi J. Charchar

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in adults in developed countries. CVD encompasses many diseased states, including hypertension, coronary artery disease and atherosclerosis. Studies in animal models and human studies have elucidated the contribution of many genetic factors, including non-coding RNAs. Non-coding RNAs are RNAs not translated into protein, involved in gene expression regulation post-transcriptionally and implicated in CVD. Of these, circular RNAs (circRNAs) and microRNAs are relevant. CircRNAs are created by the back-splicing of pre-messenger RNA and have been underexplored as contributors to CVD. These circRNAs may also act as biomarkers of human disease, as they can be extracted from whole blood, plasma, saliva and seminal fluid. CircRNAs have recently been implicated in various disease processes, including hypertension and other cardiovascular disease. This review article will explore the promising and emerging roles of circRNAs as potential biomarkers and therapeutic targets in CVD, in particular hypertension.


2019 ◽  
Vol 4 (3) ◽  
pp. 238-250 ◽  
Author(s):  
Paula S Ramos

Scleroderma or systemic sclerosis is thought to result from the interplay between environmental or non-genetic factors in a genetically susceptible individual. Epigenetic modifications are influenced by genetic variation and environmental exposures, and change with chronological age and between populations. Despite progress in identifying genetic, epigenetic, and environmental risk factors, the underlying mechanism of systemic sclerosis remains unclear. Since epigenetics provides the regulatory mechanism linking genetic and non-genetic factors to gene expression, understanding the role of epigenetic regulation in systemic sclerosis will elucidate how these factors interact to cause systemic sclerosis. Among the cell types under tight epigenetic control and susceptible to epigenetic dysregulation, immune cells are critically involved in early pathogenic events in the progression of fibrosis and systemic sclerosis. This review starts by summarizing the changes in DNA methylation, histone modification, and non-coding RNAs associated with systemic sclerosis. It then discusses the role of genetic, ethnic, age, and environmental effects on epigenetic regulation, with a focus on immune system dysregulation. Given the potential of epigenome editing technologies for cell reprogramming and as a therapeutic approach for durable gene regulation, this review concludes with a prospect on epigenetic editing. Although epigenomics in systemic sclerosis is in its infancy, future studies will help elucidate the regulatory mechanisms underpinning systemic sclerosis and inform the design of targeted epigenetic therapies to control its dysregulation.


2021 ◽  
Vol 14 (6) ◽  
pp. 491
Author(s):  
Pía Loren ◽  
Nicolás Saavedra ◽  
Kathleen Saavedra ◽  
Tomás Zambrano ◽  
Patricia Moriel ◽  
...  

Cisplatin is an antineoplastic drug used for the treatment of many solid tumors. Among its various side effects, nephrotoxicity is the most detrimental. In recent years, epigenetic regulation has emerged as a modulatory mechanism of cisplatin-induced nephrotoxicity, involving non-coding RNAs, DNA methylation and histone modifications. These epigenetic marks alter different signaling pathways leading to damage and cell death. In this review, we describe how different epigenetic modifications alter different pathways leading to cell death by apoptosis, autophagy, necroptosis, among others. The study of epigenetic regulation is still under development, and much research remains to fully determine the epigenetic mechanisms underlying cell death, which will allow leading new strategies for the diagnosis and therapy of this disease.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
A Kratzer ◽  
H Giral Arnal ◽  
V Franke ◽  
M Moobed ◽  
A Akalin ◽  
...  

Abstract Background Monocytes are important immune cells in both onset and resolution of inflammation during pathologies such as acute myocardial infarction (AMI) and atherosclerosis. Long non-coding RNAs (lncRNAs) have emerged as novel regulatory and highly cell-specific molecules that can modulate cell physiology in numerous ways such as mRNA (de-)stabilization, micro RNA sponging or scaffolding of RNA binding proteins. Purpose Define a complete human monocyte subpopulation-specific transcriptome of long non-coding RNAs and characterize the difference in the profile of these RNA molecules in AMI patients. Methods and results Human monocyte subpopulations, defined as classical, intermediate and non-classical based on the expression of the surface markers CD14 and CD16, were collected on a FACS Aria II. Ribosomal-depleted cDNA libraries generated from total RNA were processed for Next Generation Sequencing on a HiSeq Illumina 2000. Computationally intensive bioinformatics revealedannotated lncRNAs, antisense, pseudogene and circular RNAs with significant difference in their expression profiles within subpopulations of healthy donors such as MEG3 or TERC, potential role players in cardiovascular disease. Our data also unraveled novel non-annotated ncRNAs not yet reported to reference databases, which are expected to be monocyte-specific. We applied certain criteria to identify potential candidate molecules such as annotation with existing Ensembl ID and a pre-determined expression level. Thereupon we selected differentially regulated long non-coding RNAs differentially expressed in cardiovascular disease and discovered 18 annotated potential lncRNAs dysregulated in classical monocytes of AMI patients such as HLX antisense, which might be involved in monocyte differentiation. Additional 5 targets appeared specific only for differences in intermediate and 3 with additional specific differences only in non-classical monocytes.Real-time PCR was applied for validation of long non-coding linear and circular RNAs differential expression and also to determine their nucleocytoplasmic distribution. We observed preferential nuclear expression for most lncRNAs in contrast to cytoplasmic circRNAs. In vitro assays for silencing and overexpressing certain target molecules as well astreatment withinflammatory stimuli and in silicoanalysis with different bioinformatics tools such as FANTOM and UCSC browser will help to unravel their functionality. Conclusions Next generation sequencing allowed us to define a human monocyte subpopulation-specific long non-coding transcriptome that presented significant differences in both lncRNA and circRNAs within monocyte subpopulations of healthy subjects and AMI patients. Studying functional mechanisms of identified lncRNAs and their interaction with the coding genome will help to unravel novel regulatory means of monocytes in acute myocardial infarction providing new opportunities for therapeutic approaches. Acknowledgement/Funding DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany;Berlin Institute of Health (BIH);Swiss National Science Foundation (SNF)


2021 ◽  
Vol 11 ◽  
Author(s):  
Fang Wang ◽  
Greg Malnassy ◽  
Wei Qiu

Hepatocellular carcinoma (HCC) is a highly lethal and complex malignancy strongly influenced by the surrounding tumor microenvironment. The HCC microenvironment comprises hepatic stellate cells (HSCs), tumor-associated macrophages (TAMs), stromal and endothelial cells, and the underlying extracellular matrix (ECM). Emerging evidence demonstrates that epigenetic regulation plays a crucial role in altering numerous components of the HCC tumor microenvironment. In this review, we summarize the current understanding of the mechanisms of epigenetic regulation of the microenvironment in HCC. We review recent studies demonstrating how specific epigenetic mechanisms (DNA methylation, histone regulation, and non-coding RNAs mediated regulation) in HSCs, TAMs, and ECM, and how they contribute to HCC development, so as to gain new insights into the treatment of HCC via regulating epigenetic regulation in the tumor microenvironment.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Brian T. Graves ◽  
Cindy L. Munro

Epigenetics is the study of alterations in the function of genes that do not involve changes in the DNA sequence. Within the critical care literature, it is a relatively new and exciting avenue of research in describing pathology, clinical course, and developing targeted therapies to improve outcomes. In this paper, we highlight current research relative to critical care that is focused within the major epigenetic mechanisms of DNA methylation, histone modification, microRNA regulation, and composite epigenetic scoring. Within this emerging body of research it is quite clear that the novel therapies of the future will require clinicians to understand and navigate an even more complex and multivariate relationship between genetic, epigenetic, and biochemical mechanisms in conjunction with clinical presentation and course in order to significantly improve outcomes within the acute and critically ill population.


2022 ◽  
Vol 8 ◽  
Author(s):  
Chan Wu ◽  
Binghong Liu ◽  
Ruiying Wang ◽  
Gang Li

Myocardial infarction (MI) is the most frequent end-point of cardiovascular pathology, leading to higher mortality worldwide. Due to the particularity of the heart tissue, patients who experience ischemic infarction of the heart, still suffered irreversible damage to the heart even if the vascular reflow by treatment, and severe ones can lead to heart failure or even death. In recent years, several studies have shown that microRNAs (miRNAs), playing a regulatory role in damaged hearts, bring light for patients to alleviate MI. In this review, we summarized the effect of miRNAs on MI with some mechanisms, such as apoptosis, autophagy, proliferation, inflammatory; the regulation of miRNAs on cardiac structural changes after MI, including angiogenesis, myocardial remodeling, fibrosis; the application of miRNAs in stem cell therapy and clinical diagnosis; other non-coding RNAs related to miRNAs in MI during the past 5 years.


2019 ◽  
Vol 72 (5) ◽  
pp. 779-783
Author(s):  
Victor A. Ognev ◽  
Anna A. Podpriadova ◽  
Anna V. Lisova

Introduction:The high level of morbidity and mortality from cardiovascular disease is largely due toinsufficient influence on the main risk factors that contribute to the development of myocardial infarction.Therefore, a detailed study and assessment of risk factors is among the most important problems of medical and social importance. The aim: To study and evaluate the impact of biological, social and hygienic, social and economic, psychological, natural and climatic risk factors on the development of myocardial infarction. Materials and methods: A sociological survey was conducted in 500 people aged 34 to 85. They were divided into two groups. The main group consisted of 310 patients with myocardial infarction. The control group consisted of 190 practically healthy people, identical by age, gender and other parameters, without diseases of the cardiovascular system. Results: It was defined that 30 factors have a significant impact on the development of myocardial infarction.Data analysis revealed that the leading risk factors for myocardial infarction were biological and socio-hygienic. The main biological factors were: hypertension and hypercholesterolemia. The man socio-hygienic factor was smoking. Conclusions: Identification of risk factors provides new opportunities for the development of more effective approaches for the prevention and treatment of myocardial infarction.


Sign in / Sign up

Export Citation Format

Share Document