scholarly journals AS03-Adjuvanted, Very-Low-Dose Influenza Vaccines Induce Distinctive Immune Responses Compared to Unadjuvanted High-Dose Vaccines in BALB/c Mice

2015 ◽  
Vol 6 ◽  
Author(s):  
Karen K. Yam ◽  
Jyotsana Gupta ◽  
Kaitlin Winter ◽  
Elizabeth Allen ◽  
Angela Brewer ◽  
...  
2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 271-272
Author(s):  
Janna Shapiro ◽  
Helen Kuo ◽  
Rosemary Morgan ◽  
Huifen Li ◽  
Sabra Klein ◽  
...  

Abstract Older adults bear the highest burden of severe disease and complications associated with seasonal influenza, with annual vaccination serving as the best option for protection. Variability in vaccine efficacy exists, yet the host factors that affect immune responses to inactivated influenza vaccines (IIV) are incompletely understood. We hypothesized that sex and frailty interact to affect vaccine-induced humoral responses among older adults. To test this hypothesis, community-dwelling adults above 75 years of age were recruited yearly, assessed for frailty (as defined by the Cardiovascular Health Study criteria), and vaccinated with the high-dose trivalent IIV. Humoral immune responses were evaluated via hemagglutination inhibition titers. The study began during the 2014-2015 influenza season, with yearly cohorts ranging from 76-163 individuals. A total of 617 vaccinations were delivered from 2014-2019. In preliminary analyses, the outcome of interest was seroconversion, defined as ≥ 4-fold rise in titers. Crude odds ratios suggest that females are more likely to seroconvert to influenza A strains (H1N1: OR = 1.39, (0.98-1.96) ; H3N2: 1.17 (0.85 – 1.62)), while males are more likely to seroconvert to the B strain (OR = 0.85 (0.60 – 1.22)). Furthermore, this sex difference was modified by frailty – for example, the odds of seroconversion to H1N1 were 65% higher for females than males among those who were nonfrail, and only 30% higher among females who were frail. Together, these results suggest that sex and frailty interact to impact immune responses to influenza vaccines. These findings may be leveraged to better protect vulnerable populations.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3267-3267
Author(s):  
Lauren T. Southerland ◽  
Jian-Ming Li ◽  
Sohrab Hossain ◽  
Cynthia Giver ◽  
Wayne Harris ◽  
...  

Abstract Background: The severe morbidity and mortality associated with bone marrow transplantation (BMT) is caused by uninhibited immune responses to alloantigen and suppressed immune responses to pathogens. Vasoactive Intestinal Peptide (VIP) is an immunomodulatory neuropeptide produced by T-cells and nerve fibers in peripheral lymphoid organs that suppresses immune responses by induction of tolerogenic dendritic cells. In order to determine the immunoregulatory effects of VIP, we examined T-cell immune responses to allo- and viral-antigens in VIP knockout (KO) mice and mouse BMT recipients of hematopoietic cells from VIP KO donors. Methods: VIP KO mice and VIP WT littermates were infected with lethal or sub-lethal doses (5 × 104− 5 × 105 PFU) of murine cytomegalovirus (mCMV) and the T-cell response to viral antigen was measured by flow cytometry for mCMV peptide-MHC class 1-tetramer+ CD8+ T-cells. We transplanted 5 × 106 BM plus 1 × 106 splenocytes (SP) either from VIP KO or VIP WT donors in an C57BL/6 to F1(BL/6 × Balb/c) allo-BMT model and assessed survival, GvHD, donor T-cell expansion, chimerism, and response to mCMV vaccination and mCMV infection. Results: B-cell, αβ and γδ T-cell, CD8+ T-cell, CD11b+ myeloid cell, and dendritic cell numbers were equivalent between VIP KO and WT mice, while VIP KO mice had higher number of CD4+ and CD4+CD62L+CD25+ T-cells. Non-transplanted VIP KO mice survived mCMV infection better compared to VIP WT, with a brisker anti-viral T-cell response in the blood. In the allogeneic BMT setting, recipients of VIP KO BM plus VIP KO SP had more weight loss and lower (40%) 100 day post-transplant survival compared to the recipients of VIP KO BM plus WT SP (80% survival), recipients of WT BM plus KO SP (100% survival), and recipients of WT BM plus WT SP (80% survival). Recipients of VIP KO grafts had a significantly greater anti-mCMV response that peaked four days earlier than the tetramer response of mice transplanted with WT cells. This increased anti-viral response to vaccination correlated with a greater and more rapid T-cell response to secondary viral challenge. Conclusions: These experiments suggest that the absence of all VIP in the body, or the absence of VIP in a transplanted immune system, enhances anti-viral immunity and allo-immune responses. Modulation of the VIP pathway is a novel method to regulate post-transplant immunity. Figure 1: VIP knockout(KO) mice have an increased CMV tetramer response. VIP KO and VIP WT mice were infected (day 0) with either a sub-lethal low dose (5 × 10^4 PFU) or a lethal high dose (5 × 10^5 PFU) of CMV. Peripheral blood was stained for T cell markers and tetramer and analyzed by flow cytometry. On day 3, high dosed VIP KO mice had a higher number of tetramer positive CD8 T cells and better survival than WT mice (all high dose VIP WT died prior to day 10). VIP KO mice had a significant increase in tetramer positive CD8 T cells between days 3 and 10. *** p<0.01, difference between VIP KO and VIP WT littermate at designated dose level and day. Figure 1:. VIP knockout(KO) mice have an increased CMV tetramer response. VIP KO and VIP WT mice were infected (day 0) with either a sub-lethal low dose (5 × 10^4 PFU) or a lethal high dose (5 × 10^5 PFU) of CMV. Peripheral blood was stained for T cell markers and tetramer and analyzed by flow cytometry. On day 3, high dosed VIP KO mice had a higher number of tetramer positive CD8 T cells and better survival than WT mice (all high dose VIP WT died prior to day 10). VIP KO mice had a significant increase in tetramer positive CD8 T cells between days 3 and 10. *** p<0.01, difference between VIP KO and VIP WT littermate at designated dose level and day.


2004 ◽  
Vol 78 (24) ◽  
pp. 14048-14052 ◽  
Author(s):  
Zhong-Min Ma ◽  
Kristina Abel ◽  
Tracy Rourke ◽  
Yichuan Wang ◽  
Christopher J. Miller

ABSTRACT In rhesus macaques, classic systemic infection, characterized by persistent viremia and seroconversion, occurred after multiple low-dose (103 50% tissue culture infective doses) intravaginal (IVAG) inoculations with simian immunodeficiency virus (SIV) strain SIVmac251. Monkeys developed classic SIV infections after a variable number of low-dose IVAG exposures to SIVmac251. Once established, the systemic infection was identical to SIV infection following high-dose IVAG SIV inoculation. However, occult systemic infection characterized by transient cell-associated or cell-free viremia consistently occurred early in the series of multiple vaginal SIV exposures. Further, antiviral cellular immune responses were present prior to the establishment of a classic systemic infection in the low-dose vaginal SIV transmission model.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S970-S970
Author(s):  
Vivek Shinde ◽  
Rongman Cai ◽  
Joyce S Plested ◽  
Bin Zhou ◽  
Haixia Zhou ◽  
...  

Abstract Background We developed a recombinant saponin-adjuvanted (Matrix-M1) quadrivalent hemagglutinin nanoparticle influenza vaccine (qNIV; NanoFlu) for older adults to address two impediments to efficacy of current, predominantly egg-derived, seasonal influenza vaccines: (1) limited protection against antigenic drift variants, particularly H3N2 viruses; and (2) antigenic mismatch between vaccine and circulating strains due to egg-adaptive mutations arising during manufacturing. In a prior Phase 1 trial, we showed that qNIV induced robust, broadly cross-reactive antibody responses against multiple antigenically drifted H3N2 viruses, which were 47–64% better than the egg-derived comparator trivalent high-dose inactivated influenza vaccine (IIV3-HD; Fluzone-High Dose). We undertook a Phase 2 trial to optimize the formulation of qNIV, and to compare qNIV immune responses to those of IIV3-HD and quadrivalent recombinant influenza vaccine (RIV4; FluBlok). Methods In this phase 2 dose and formulation finding RCT, we randomized 1,375 subjects aged ≥65 years to be immunized with 1 of 7 test vaccines: 5 different formulations of qNIV, IIV3-HD, or RIV4; and assessed wild-type hemagglutinin-inhibition (wt-HAI) and microneutralization (wt-MN) antibody responses (Day 0/28/56). Results Matrix-M1-adjuvanted qNIV induced 15–29% higher wt-HAI titers across 5 vaccine homologous or drifted H3N2 strains at Day 28 relative to unadjuvanted qNIV (statistically significantly superior for 5 of 6 strains tested). At Day 28, several qNIV formulations induced significantly superior wt-HAI titers vs. IIV3-HD (39–45%, 17–22%, and 44–48% greater titers for homologous A/Singapore/INFIMH-16–0019/2016—H3N2, historic-drifted A/Switzerland/9715293/2013—H3N2, and forward-drifted A/Wisconsin/19/2017—H3N2, respectively); and comparable HAI titers vs. RIV4. Wt-MN and wt-HAI data showed concordant patterns across treatment groups. Conclusion qNIV induced superior wt-HAI antibody responses vs. IIV3-HD against homologous or drifted H3N2 viruses and similar responses to RIV4. qNIV may address several critical challenges confronting current egg-derived influenza vaccines, especially in the older adult population. Disclosures All authors: No reported disclosures.


2015 ◽  
Vol 89 (7) ◽  
pp. 3568-3583 ◽  
Author(s):  
Crystal W. Burke ◽  
Mei Li ◽  
Julia L. Hurwitz ◽  
Peter Vogel ◽  
Charles J. Russell

ABSTRACTRespiratory paramyxoviruses such as respiratory syncytial virus (RSV) and human parainfluenza virus type 1 (HPIV1) to HPIV4 infect virtually all children by the age of 2 to 5 years, leading to partial but incomplete protection from reinfection. Here, we used luciferase-expressing reporter Sendai viruses (the murine counterpart of HPIV1) to noninvasively measure primary infection, immune responses, and protection from reinfection by either a lethal challenge or natural transmission in living mice. Both nonattenuated and attenuated reporter Sendai viruses were used, and three inoculation strategies were employed: intramuscular (i.m.), intranasal (i.n.) at a low dose and low volume, and i.n. at a high dose and high volume. High-dose, high-volume i.n. inoculation resulted in the highest levels of antibody responses and protection from reinfection. Low-dose, low-volume i.n. inoculation afforded complete protection from contact transmission and protection from morbidity, mortality, and viral growth during lethal challenge. i.m. inoculation was inferior to i.n. inoculation at inducing antibody responses and protection from challenge. For individual mice and across groups, the levels of serum binding and neutralizing antibody responses correlated with primary infection and protection from reinfection in the lungs. Contact transmission, the predominant mode of parainfluenza virus transmission, was modeled accurately by direct i.n. inoculation of Sendai virus at a low dose and low volume and was completely preventable by i.n. vaccination of an attenuated virus at a low dose and low volume. The data highlight differences in infection and protection from challenge in the upper versus lower respiratory tract and bear upon live attenuated vaccine development.IMPORTANCEThere are currently no licensed vaccines against HPIVs and human RSV (HRSV), important respiratory pathogens of infants and children. Natural infection leads to partial but incomplete protective immunity, resulting in subsequent reinfections even in the absence of antigenic drift. Here, we used noninvasive bioluminescence imaging in a mouse model to dissect relationships among (i) the mode of inoculation, (ii) the dynamics of primary infection, (iii) consequent immune responses, and (iv) protection from high-dose, high-volume lethal challenge and contact transmission, which we find here to be similar to that of a mild low-dose, low-volume upper respiratory tract (URT)-biased infection. Our studies demonstrate the superiority of i.n. versus i.m. vaccination in protection against both lethal challenge and contact transmission. In addition to providing correlates of protection that will assist respiratory virus vaccine development, these studies extend the development of an increasingly used technique for the study of viral infection and immunity, noninvasive bioluminescence imaging.


Author(s):  
Irina Isakova-Sivak ◽  
Victoria Matyushenko ◽  
Tatiana Kotomina ◽  
Irina Kiseleva ◽  
Elena Krutikova ◽  
...  

The development of universal influenza vaccines, i.e. vaccines that can provide broad protection against seasonal and potentially pandemic influenza viruses, has been a priority for more than 20 years. Several approaches have been proposed that redirect the adaptive immune responses from immunodominant hypervariable regions to low-immunogenic but highly conserved regions of viral proteins. Here we induced broadly reactive anti-hemagglutinin (HA) stalk antibody by sequential immunizations with live attenuated influenza vaccines (LAIVs) expressing chimeric HA (cHA). These vaccines contained the HA stalk domain from H1N1pdm09 virus but antigenically unrelated globular head domains from avian influenza viruses H5N1, H8N4 and H9N2. In addition, the source of the viral nucleoprotein (NP) of the LAIV strains was changed from A/Leningrad/17 master donor virus (MDV) to wild-type (WT) H1N1pdm09 virus, in order to induce CD8 T-cell immune responses more relevant to current infections. To avoid any difference in protective effect of the various anti-neuraminidase (NA) antibodies, all LAIVs were engineered to contain the NA gene of Len/17 MDV. Na&iuml;ve ferrets were immunized with three doses of (i) classical LAIVs containing non-chimeric HA and NP from MDV (LAIVs (NP-MDV)); (ii) cHA-based LAIVs containing NP from MDV (cHA LAIVs (NP-MDV)); and (iii) cHA-based LAIVs containing NP from H1N1pdm09 virus (cHA LAIVs (NP-WT)). A high-dose challenge with H1N1pdm09 virus induced significant pathology in the control, non-immunized ferrets, including high virus titers in respiratory tissues, clinical signs of disease and histopathological changes in nasal turbinates and lung tissues. All three vaccination regimens protected animals from clinical manifestations of disease: immunized ferrets did not lose weight or show clinical symptoms, and their fever was significantly lower than in the control group. Further analysis of virological and pathological data revealed the following hierarchy in the cross-protective efficacy of the vaccines: cHA LAIVs (NP-WT) &gt; cHA LAIVs (NP-MDV) &gt; LAIVs (NP-MDV). This ferret study showed that prototype universal LAIVs that combine the two approaches of inducing anti-HA stalk antibody and more relevant CD8 T-cell immune responses are highly promising candidates for further clinical development.


2015 ◽  
Vol 89 (15) ◽  
pp. 7841-7851 ◽  
Author(s):  
Yufeng Song ◽  
Xiang Wang ◽  
Hongbo Zhang ◽  
Xinying Tang ◽  
Min Li ◽  
...  

ABSTRACTInfluenza infection causes severe disease and death in humans. In traditional vaccine research and development, a single high-dose virus challenge of animals is used to evaluate vaccine efficacy. This type of challenge model may have limitations. In the present study, we developed a novel challenge model by infecting mice repeatedly in short intervals with low doses of influenza A virus. Our results show that compared to a single high-dose infection, mice that received repeated low-dose challenges showed earlier morbidity and mortality and more severe disease. They developed higher vial loads, more severe lung pathology, and greater inflammatory responses and generated only limited influenza A virus-specific B and T cell responses. A commercial trivalent influenza vaccine protected mice against a single high and lethal dose of influenza A virus but was ineffective against repeated low-dose virus challenges. Overall, our data show that the repeated low-dose influenza A virus infection mouse model is more stringent and may thus be more suitable to select for highly efficacious influenza vaccines.IMPORTANCEInfluenza epidemics and pandemics pose serious threats to public health. Animal models are crucial for evaluating the efficacy of influenza vaccines. Traditional models based on a single high-dose virus challenge may have limitations. Here, we describe a new mouse model based on repeated low-dose influenza A virus challenges given within a short period. Repeated low-dose challenges caused more severe disease in mice, associated with higher viral loads and increased lung inflammation and reduced influenza A virus-specific B and T cell responses. A commercial influenza vaccine that was shown to protect mice from high-dose challenge was ineffective against repeated low-dose challenges. Overall, our results show that the low-dose repeated-challenge model is more stringent and may therefore be better suited for preclinical vaccine efficacy studies.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Yinghua Zhao ◽  
Liyan Sui ◽  
Ping Wu ◽  
Wenfang Wang ◽  
Zedong Wang ◽  
...  

AbstractThe recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of ongoing global pandemic of COVID-19, may trigger immunosuppression in the early stage and overactive immune response in the late stage of infection; However, the underlying mechanisms are not well understood. Here we demonstrated that the SARS-CoV-2 nucleocapsid (N) protein dually regulated innate immune responses, i.e., the low-dose N protein suppressed type I interferon (IFN-I) signaling and inflammatory cytokines, whereas high-dose N protein promoted IFN-I signaling and inflammatory cytokines. Mechanistically, the SARS-CoV-2 N protein dually regulated the phosphorylation and nuclear translocation of IRF3, STAT1, and STAT2. Additionally, low-dose N protein combined with TRIM25 could suppress the ubiquitination and activation of retinoic acid-inducible gene I (RIG-I). Our findings revealed a regulatory mechanism of innate immune responses by the SARS-CoV-2 N protein, which would contribute to understanding the pathogenesis of SARS-CoV-2 and other SARS-like coronaviruses, and development of more effective strategies for controlling COVID-19.


2021 ◽  
Author(s):  
Yinghua Zhao ◽  
Liyan Sui ◽  
Ping Wu ◽  
Wenfang Wang ◽  
Guangyun Tan ◽  
...  

ABSTRACTThe recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the ongoing global pandemic of COVID-19, may trigger immunosuppression in the early stage and a cytokine storm in the late stage of infection, however, the underlying mechanisms are not well understood. Here we demonstrated that the SARS-CoV-2 nucleocapsid (N) protein dually regulated innate immune responses, i.e., the low-dose N protein suppressed type I interferon (IFN-I) signaling and inflammatory cytokines, whereas high-dose N protein promoted IFN-I signaling and inflammatory cytokines. Mechanistically, the SARS-CoV-2 N protein interacted with the tripartite motif protein 25 (TRIM25), thereby dually regulating the phosphorylation and nuclear translocation of IRF3, STAT1 and STAT2. Additionally, low-dose N protein combined with TRIM25 could suppress retinoic acid-inducible gene I (RIG-I) ubiquitination and activation. Our findings revealed a regulatory mechanism of innate immune responses by the SARS-CoV-2 N protein, which would contribute to understanding the pathogenesis of SARS-CoV-2 and other SARS-like coronaviruses, and development of more effective strategies for controlling COVID-19.


Sign in / Sign up

Export Citation Format

Share Document