scholarly journals A Bioactive Extract Rich in Triterpenic Acid and Polyphenols from Olea europaea Promotes Systemic Immunity and Protects Atlantic Salmon Smolts Against Furunculosis

2021 ◽  
Vol 12 ◽  
Author(s):  
Ricardo Salomón ◽  
M. Dolors Furones ◽  
Felipe E. Reyes-López ◽  
Lluis Tort ◽  
Joana P. Firmino ◽  
...  

In the present study, the modulation of the transcriptional immune response (microarray analysis) in the head kidney (HK) of the anadromous fish Atlantic salmon (Salmo salar) fed a diet supplemented with an olive fruit extract (AQUOLIVE®) was evaluated. At the end of the trial (133 days), in order to investigate the immunomodulatory properties of the phytogenic tested against a bacterial infection, an in vivo challenge with Aeromonas salmonicida was performed. A total number of 1,027 differentially expressed genes (DEGs) (805 up- and 222 downregulated) were found when comparing the transcriptomic profiling of the HK from fish fed the control and AQUOLIVE® diets. The HK transcripteractome revealed an expression profile that mainly favored biological processes related to immunity. Particularly, the signaling of i-kappa B kinase/NF-kappa and the activation of leukocytes, such as granulocytes and neutrophils degranulation, were suggested to be the primary actors of the innate immune response promoted by the tested functional feed additive in the HK. Moreover, the bacterial challenge with A. salmonicida that lasted 12 days showed that the cumulative survival was higher in fish fed the AQUOLIVE® diet (96.9 ± 6.4%) than the control group (60.7 ± 13.5%). These results indicate that the dietary supplementation of AQUOLIVE® at the level of 0.15% enhanced the systemic immune response and reduced the A. salmonicida cumulative mortality in Atlantic salmon smolts.

Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 361
Author(s):  
Valentina Valenzuela-Muñoz ◽  
Bárbara P. Benavente ◽  
Antonio Casuso ◽  
Yeny Leal ◽  
Cristian Gallardo-Escárate

Infection processes displayed by pathogens require the acquisition of essential inorganic nutrients and trace elements from the host to survive and proliferate. Without a doubt, iron is a crucial trace metal for all living organisms and also a pivotal component in the host–parasite interactions. In particular, the host reduces the iron available to face the infectious disease, increasing iron transport proteins’ expression and activating the heme synthesis and degradation pathways. Moreover, recent findings have suggested that iron metabolism modulation in fish promotes the immune response by reducing cellular iron toxicity. We hypothesized that recombinant proteins related to iron metabolism could modulate the fish’s immune system through iron metabolism and iron-responsive genes. Here a chimeric iron transport protein (IPath®) was bioinformatically designed and then expressed in a recombinant bacterial system. The IPath® protein showed a significant chelating activity under in vitro conditions and biological activity. Taking this evidence, a vaccine candidate based on IPath® was evaluated in Atlantic salmon challenged with three different fish pathogens. Experimental trials were conducted using two fish groups: one immunized with IPath® and another injected with adjutant as the control group. After 400 accumulated thermal units (ATUs), two different infection trials were performed. In the first one, fish were infected with the bacterium Aeromonas salmonicida, and in a second trial, fish were exposed to the ectoparasite Caligus rogercresseyi and subsequently infected with the intracellular bacterium Piscirickettsia salmonis. Fish immunized with IPath® showed a significant delay in the mortality curve in response to A. salmonicida and P. salmonis infections. However, no significant differences between infected and control fish groups were observed at the end of the experiment. Notably, sea lice burden reduction was observed in vaccinated Atlantic salmon. Transcriptional analysis evidenced a high modulation of iron-homeostasis-related genes in fish vaccinated with IPath® compared to the control group during the infection. Moreover, increasing expression of Atlantic salmon IgT was associated with IPath® immunization. This study provides evidence that the IPath® protein could be used as an antigen or booster in commercial fish vaccines, improving the immune response against relevant pathogens for salmon aquaculture.


2014 ◽  
Vol 83 (2) ◽  
pp. 125-131 ◽  
Author(s):  
Nejdet Gültepe ◽  
Soner Bilen ◽  
Sevdan Yılmaz ◽  
Derya Güroy ◽  
Seyit Aydın

Effects of different herbal extracts on the growth and immune defense of fish were researched in the last decade. The aim of this study was to determine the dietary effects of thyme (Thymus vulgaris), rosemary (Rosmarinus officinalis) and fenugreek (Trigonella foenum graecum) as a feed additive on haematology, innate immune response, and disease resistance of tilapia (Oreochromis mossambicus). In total 228 healthy fish tilapia were divided into four groups (57 fish in one group) and fed diets supplemented with thyme, rosemary and fenugreek at levels of 1%, respectively; fish in the control group were fed diet without any spices. Fish were fed ad libitum three times a day for 45 days. All fish of the experimental groups significantly (P < 0.05) enhanced phagocytic activity, haematocrit, white blood cell, red blood cell, neutrophil and monocyte counts in blood. Significant (P < 0.05) increase of plasma myeloperoxidase and lysozyme activity was found in fish receiving a feed supplemented with fenugreek after 30 days. Respiratory burst activity was non-significantly (P > 0.05) changed during the whole experiment. After 45 days of feeding, fish were injected intraperitoneally with 100 μl of Streptococcus iniae (8 × 108 colony forming unit). The cumulative mortality was 22%, 27% and 31% in fish receiving diets supplemented with 1% thyme, rosemary and fenugreek, respectively, compared to 61% mortality in the control group. The results indicate that all three supplements used improved the haematological status, non-specific immune response and disease resistance of tilapia against S. iniae; this is the first similar study.


2021 ◽  
Author(s):  
Hosameldeen Mohamed Husien ◽  
JunJie Huang ◽  
WeiLong Peng ◽  
ShuMei Zheng ◽  
JinGui Li

Abstract Moringa oleifera (MO) is a widely used as the nutritious and non-traditional feed supplementation containing kinds of bioactive substances. However, the enhancement effect of Moringa oleifera leaf Polysaccharide (MOLP) as a feed additive in broilers growth performance and immunity remains unclear. In this study, MOLP was obtained by water extraction and alcohol precipitation method, then purified with Trichloroacetic acid (TCA) assay. Chickens were randomly divided into 4 groups, to receive different doses of MOLP (0, 0.1, 0.2, 0.4g/kg) in feed for 3 weeks. The body weight gain (BWG) and feed consumption were recorded for feed conversion ratio (FCR) and average daily feed intake (ADFI) calculation. Broiler chickens were sacrificed and sampled on day 14, 21, 28 (D 14, D 21, and D 28) respectively. Serological indicators, including total protein (TP), albumin (ALB), globulin (GLO), and creatinine (CREA) were detected. ELISA kits were applied for detecting the levels of immunoglobulin A (IgA), immunoglobulin G (IgG), interleukin-2 (IL-2), and tumor necrosis factor (TNF-α). From D 21 to D 28, the results showed that middle dose of MOLP significantly increased BWG and ADFI as well as liver and bursa indexes when compared with the control group. In addition, TP and GLO were also increased (P<0.05). All MOLP treatments enhanced the serum concentrations of IgG and IL-2 (P<0.01). Furthermore, results of quantitative RT-PCR showed that high dose of MOLP treatment significantly increased (P<0.001) the mRNA expression levels of IL-2 and TNF-α of chickens relative to the control group. In conclusion, the results showed that MOLP supplementation contributed to improve growth performance and immune response in broiler chickens, and MOLP could be considered as a promising feed additive.


2021 ◽  
Author(s):  
Soheila Moeini ◽  
Ehsan Karimi ◽  
Ehsan Oskoueian

Abstract Background: This research was performed to synthesize nanophytosomes-loaded high phenolic fraction (HPF) from Juniperus polycarpos fruit extract and investigate its antiproliferation effects against breast cancer in mice model. Results: The nanophytosomes-loaded HPF from Juniperus polycarpos fruit extract was synthesized. The mice trial was conducted to determine the possible toxic effects of the synthesized nanophytosomes. The anticancer, pro-apoptotic, and antioxidative activities of the nanophytosomes were determined. The nanophytosomes-loaded HPF had a spherical structure with a size of 176 nm and a polydispersity index coefficient of 0.24. The in-vivo study manifested that nanophytosomes-loaded HPF significantly improved weight gain and food intake compared to the negative control group (p<0.05). The nanophytosomes-loaded HPF significantly enhanced the expression of bax (3.4-fold) and caspase-3 (2.7-fold) genes but reduced bcl2 (3.6-fold) gene expression in tumor cells. The average tumor size was significantly decreased in mice treated with nanophytosomes-loaded HPF (p<0.05). The expression of GPX (2.3-fold) and SOD (2.7-fold) antioxidants in the liver of mice supplemented with nanophytosomes-loaded HPF was significantly developed compared to the negative control (p<0.05). The nanophytosomes-loaded HPF did not show toxicity on normal cells. Conclusion: Our results indicated that nanophytosomes-loaded HPF might be a potential anticancer agent for the breast cancer treatment.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Sem H Jacobs ◽  
Eva Dóró ◽  
Ffion R Hammond ◽  
Mai E Nguyen-Chi ◽  
Georges Lutfalla ◽  
...  

A tightly regulated innate immune response to trypanosome infections is critical to strike a balance between parasite control and inflammation-associated pathology. In this study, we make use of the recently established Trypanosoma carassii infection model in larval zebrafish to study the early response of macrophages and neutrophils to trypanosome infections in vivo. We consistently identified high- and low-infected individuals and were able to simultaneously characterize their differential innate response. Not only did macrophage and neutrophil number and distribution differ between the two groups, but also macrophage morphology and activation state. Exclusive to high-infected zebrafish, was the occurrence of foamy macrophages characterized by a strong pro-inflammatory profile and potentially associated with an exacerbated immune response as well as susceptibility to the infection. To our knowledge this is the first report of the occurrence of foamy macrophages during an extracellular trypanosome infection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alvaro Santibañez ◽  
Diego Paine ◽  
Mick Parra ◽  
Carlos Muñoz ◽  
Natalia Valdes ◽  
...  

Lactic acid bacteria are a powerful vehicle for releasing of cytokines and immunostimulant peptides at the gastrointestinal level after oral administration. However, its therapeutic application against pathogens that affect rainbow trout and Atlantic salmon has been little explored. Type II interferon in Atlantic salmon activates the antiviral response, protecting against viral infection, but its role against bacterial infection has not been tested in vivo. In this work, through the design of a recombinant lactic acid bacterium capable of producing Interferon gamma from Atlantic salmon, we explore its role against bacterial infection and the ability to stimulate systemic immune response after oral administration of the recombinant probiotic. Recombinant interferon was active in vitro, mainly stimulating IL-6 expression in SHK-1 cells. In vivo, oral administration of the recombinant probiotic produced an increase in IL-6, IFNγ and IL-12 in the spleen and kidney, in addition to stimulating the activity of lysozyme in serum. The challenge trials indicated that the administration of the IFNγ-producing probiotic doubled the survival in fish infected with F. psychrophilum. In conclusion, our results showed that the oral administration of lactic acid bacteria producing IFNγ managed to stimulate the immune response at a systemic level, conferring protection against pathogens, showing a biotechnological potential for its application in aquaculture.


2020 ◽  
Vol 88 (6) ◽  
Author(s):  
Jenessa A. Winston ◽  
Alissa J. Rivera ◽  
Jingwei Cai ◽  
Rajani Thanissery ◽  
Stephanie A. Montgomery ◽  
...  

ABSTRACT Clostridioides difficile infection (CDI) is associated with increasing morbidity and mortality posing an urgent threat to public health. Recurrence of CDI after successful treatment with antibiotics is high, thus necessitating discovery of novel therapeutics against this enteric pathogen. Administration of the secondary bile acid ursodeoxycholic acid (UDCA; ursodiol) inhibits the life cycles of various strains of C. difficile in vitro, suggesting that the FDA-approved formulation of UDCA, known as ursodiol, may be able to restore colonization resistance against C. difficile in vivo. However, the mechanism(s) by which ursodiol is able to restore colonization resistance against C. difficile remains unknown. Here, we confirmed that ursodiol inhibits C. difficile R20291 spore germination and outgrowth, growth, and toxin activity in a dose-dependent manner in vitro. In a murine model of CDI, exogenous administration of ursodiol resulted in significant alterations in the bile acid metabolome with little to no changes in gut microbial community structure. Ursodiol pretreatment resulted in attenuation of CDI pathogenesis early in the course of disease, which coincided with alterations in the cecal and colonic inflammatory transcriptome, bile acid-activated receptors nuclear farnesoid X receptor (FXR) and transmembrane G-protein-coupled membrane receptor 5 (TGR5), which are able to modulate the innate immune response through signaling pathways such as NF-κB. Although ursodiol pretreatment did not result in a consistent decrease in the C. difficile life cycle in vivo, it was able to attenuate an overly robust inflammatory response that is detrimental to the host during CDI. Ursodiol remains a viable nonantibiotic treatment and/or prevention strategy against CDI. Likewise, modulation of the host innate immune response via bile acid-activated receptors FXR and TGR5 represents a new potential treatment strategy for patients with CDI.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Hélène Guegan ◽  
Kevin Ory ◽  
Sorya Belaz ◽  
Aurélien Jan ◽  
Sarah Dion ◽  
...  

Abstract Background The chemotherapeutic arsenal available to treat visceral leishmaniasis is currently limited, in view of many drawbacks such as high cost, toxicity or emerging resistance. New therapeutic strategies are particularly needed to improve the management and the outcome in immunosuppressed patients. The combination of an immunomodulatory drug to a conventional anti-Leishmania treatment is an emerging concept to reverse the immune bias from Th2 to Th1 response to boost healing and prevent relapses. Methods Here, immunostimulating and leishmanicidal properties of octyl-β-d-galactofuranose (Galf) were assessed in human monocyte-derived macrophages (HM) and in a murine model, after challenge with Leishmania donovani promastigotes. We recorded parasite loads and expression of various cytokines and immune effectors in HM and mouse organs (liver, spleen, bone marrow), following treatment with free (Galf) and liposomal (L-Galf) formulations. Results Both treatments significantly reduced parasite proliferation in HM, as well as liver parasite burden in vivo (Galf, P < 0.05). Consistent with in vitro results, we showed that Galf- and L-Galf-treated mice displayed an enhanced Th1 immune response, particularly in the spleen where pro-inflammatory cytokines TNF-α, IL-1β and IL-12 were significantly overexpressed compared to control group. The hepatic recruitment of myeloid cells was also favored by L-Galf treatment as evidenced by the five-fold increase of myeloperoxidase (MPO) induction, which was associated with a higher number of MPO-positive cells within granulomas. By contrast, the systemic level of various cytokines such as IL-1β, IL-6, IL-17A or IL-27 was drastically reduced at the end of treatment. Conclusions Overall, these results suggest that Galf could be tested as an adjuvant in combination with current anti-parasitic drugs, to restore an efficient immune response against infection in a model of immunosuppressed mice.


Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3566
Author(s):  
Federica Gaiani ◽  
Sara Graziano ◽  
Fatma Boukid ◽  
Barbara Prandi ◽  
Lorena Bottarelli ◽  
...  

The reasons behind the increasing prevalence of celiac disease (CD) worldwide are still not fully understood. This study adopted a multilevel approach (in vitro, ex vivo, in vivo) to assess the potential of gluten from different wheat varieties in triggering CD. Peptides triggering CD were identified and quantified in mixtures generated from simulated gastrointestinal digestion of wheat varieties (n = 82). Multivariate statistics enabled the discrimination of varieties generating low impact on CD (e.g., Saragolla) and high impact (e.g., Cappelli). Enrolled subjects (n = 46) were: 19 healthy subjects included in the control group; 27 celiac patients enrolled for the in vivo phase. Celiacs were divided into a gluten-free diet group (CD-GFD), and a GFD with Saragolla-based pasta group (CD-Sar). The diet was followed for 3 months. Data were compared between CD-Sar and CD-GFD before and after the experimental diet, demonstrating a limited ability of Saragolla to trigger immunity, although not comparable to a GFD. Ex vivo studies showed that Saragolla and Cappelli activated immune responses, although with great variability among patients. The diverse potential of durum wheat varieties in triggering CD immune response was demonstrated. Saragolla is not indicated for celiacs, yet it has a limited potential to trigger adverse immune response.


Sign in / Sign up

Export Citation Format

Share Document