scholarly journals The Diverse Potential of Gluten from Different Durum Wheat Varieties in Triggering Celiac Disease: A Multilevel In Vitro, Ex Vivo and In Vivo Approach

Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3566
Author(s):  
Federica Gaiani ◽  
Sara Graziano ◽  
Fatma Boukid ◽  
Barbara Prandi ◽  
Lorena Bottarelli ◽  
...  

The reasons behind the increasing prevalence of celiac disease (CD) worldwide are still not fully understood. This study adopted a multilevel approach (in vitro, ex vivo, in vivo) to assess the potential of gluten from different wheat varieties in triggering CD. Peptides triggering CD were identified and quantified in mixtures generated from simulated gastrointestinal digestion of wheat varieties (n = 82). Multivariate statistics enabled the discrimination of varieties generating low impact on CD (e.g., Saragolla) and high impact (e.g., Cappelli). Enrolled subjects (n = 46) were: 19 healthy subjects included in the control group; 27 celiac patients enrolled for the in vivo phase. Celiacs were divided into a gluten-free diet group (CD-GFD), and a GFD with Saragolla-based pasta group (CD-Sar). The diet was followed for 3 months. Data were compared between CD-Sar and CD-GFD before and after the experimental diet, demonstrating a limited ability of Saragolla to trigger immunity, although not comparable to a GFD. Ex vivo studies showed that Saragolla and Cappelli activated immune responses, although with great variability among patients. The diverse potential of durum wheat varieties in triggering CD immune response was demonstrated. Saragolla is not indicated for celiacs, yet it has a limited potential to trigger adverse immune response.

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Hélène Guegan ◽  
Kevin Ory ◽  
Sorya Belaz ◽  
Aurélien Jan ◽  
Sarah Dion ◽  
...  

Abstract Background The chemotherapeutic arsenal available to treat visceral leishmaniasis is currently limited, in view of many drawbacks such as high cost, toxicity or emerging resistance. New therapeutic strategies are particularly needed to improve the management and the outcome in immunosuppressed patients. The combination of an immunomodulatory drug to a conventional anti-Leishmania treatment is an emerging concept to reverse the immune bias from Th2 to Th1 response to boost healing and prevent relapses. Methods Here, immunostimulating and leishmanicidal properties of octyl-β-d-galactofuranose (Galf) were assessed in human monocyte-derived macrophages (HM) and in a murine model, after challenge with Leishmania donovani promastigotes. We recorded parasite loads and expression of various cytokines and immune effectors in HM and mouse organs (liver, spleen, bone marrow), following treatment with free (Galf) and liposomal (L-Galf) formulations. Results Both treatments significantly reduced parasite proliferation in HM, as well as liver parasite burden in vivo (Galf, P < 0.05). Consistent with in vitro results, we showed that Galf- and L-Galf-treated mice displayed an enhanced Th1 immune response, particularly in the spleen where pro-inflammatory cytokines TNF-α, IL-1β and IL-12 were significantly overexpressed compared to control group. The hepatic recruitment of myeloid cells was also favored by L-Galf treatment as evidenced by the five-fold increase of myeloperoxidase (MPO) induction, which was associated with a higher number of MPO-positive cells within granulomas. By contrast, the systemic level of various cytokines such as IL-1β, IL-6, IL-17A or IL-27 was drastically reduced at the end of treatment. Conclusions Overall, these results suggest that Galf could be tested as an adjuvant in combination with current anti-parasitic drugs, to restore an efficient immune response against infection in a model of immunosuppressed mice.


2015 ◽  
Vol 33 (3_suppl) ◽  
pp. 262-262
Author(s):  
David M. Goldenberg ◽  
Edmund A. Rossi ◽  
Diane L Rossi ◽  
Thomas M. Cardillo ◽  
Chien-Hsing Chang

262 Background: Trop-2 [also called tumor-associated calcium signal transducer 2 (TACSTD2), EGP-1 (epithelial glycoprotein-1), GA733-1, or M1S1]is a 35 kDa transmembrane glycoprotein that is overexpressed relative to normal tissues in a variety of human cancers, including pancreatic and gastric carcinomas, where increased expression correlates with poor prognosis. Trop-2 appears to be more tumor-specific than the related molecule, EpCAM (Trop-1). MT110, the EpCAM antibody x CD3 bispecific T-cell engager (BiTE), is currently undergoing a Phase I study in various solid tumors, including lung, gastric, colorectal, breast, prostate, and ovarian cancers. We produced a similar T-cell redirecting bispecific tandem scFv, E1-3, using the variable domains of hRS7 (humanized anti-Trop-2 mAb) and Okt-3 (anti-CD3 mAb). Methods: T-cell activation, cytokine induction and cytotoxicity were evaluated ex vivo using PBMCs or purified T cells with human pancreatic (Capan-1 and BxPC3) and gastric (NCI-N87) cancer cell lines as target cells. In vivo activity was assayed with NCI-N87 xenografts that were inoculated s.c. in a mixture with twice the number of human PBMCs and matrigel. Results: In the presence of target cells and PBMCs, E1-3 potently induced T-cell activation, proliferation, and dose-dependent cytokine production of IL-2 (>2 ng/mL), IL-6 (>1 ng/mL), IL-10 (>7 ng/mL), TNF-α (>1 ng/mL) and IFN-γ (>50 ng/mL). In vitro, E1-3 mediated a highly potent T-cell lysis of BxPC3 [IC50=0.09(±0.04) pM], Capan-1 [IC50=1.2(±1.1) pM] and NCI-N87 [IC50=1.2(±1.2) pM] target cells. In vivo, two 50-µg doses of E1-3 given three days apart cured all of the mice (N=8) bearing NCI-N87 xenografts (P=0.0005; Log-Rank). Tumors in the control group (PBMCs only) reached the endpoint (TV>1 cm3) with a median of 39.5 days. All mice remained tumor-free in the E1-3 group at 78 days. Conclusions: Trop-2 is an attractive target for T-cell-mediated killing of pancreatic, gastric and other epithelial cancers.


2006 ◽  
Vol 80 (5) ◽  
pp. 2506-2514 ◽  
Author(s):  
Haixia Zhou ◽  
Stanley Perlman

ABSTRACT Mouse hepatitis virus strain JHM (MHV-JHM) causes acute encephalitis and acute and chronic demyelinating diseases in mice. Dendritic cells (DCs) are key cells in the initiation of innate and adaptive immune responses, and infection of these cells could potentially contribute to a dysregulated immune response; consistent with this, recent results suggest that DCs are readily infected by another strain of mouse hepatitis virus, the A59 strain (MHV-A59). Herein, we show that the JHM strain also productively infected DCs. Moreover, mature DCs were at least 10 times more susceptible than immature DCs to infection with MHV-JHM. DC function was impaired after MHV-JHM infection, resulting in decreased stimulation of CD8 T cells in vitro. Preferential infection of mature DCs was not due to differential expression of the MHV-JHM receptor CEACAM-1a on mature or immature cells or to differences in apoptosis. Although we could not detect infected DCs in vivo, both CD8+ and CD11b+ splenic DCs were susceptible to infection with MHV-JHM directly ex vivo. This preferential infection of mature DCs may inhibit the development of an efficient immune response to the virus.


1990 ◽  
Vol 63 (02) ◽  
pp. 271-274 ◽  
Author(s):  
J Van Ryn-McKenna ◽  
L Cai ◽  
F A Ofosu ◽  
J Hirsh ◽  
M R Buchanan

SummaryIt has been suggested that protamine sulfate is a poor antidote for the bleeding side-effeets of low molecular weight heparins (LMWHs) in vivo, since protamine sulfate does not completely neutralize the anti-factor Xa activity of LMWHs in vitro or ex vivo. Therefore, we performed experiments to compare directly the abilities of protamine sulfate to neutralize the anticoagulant activities of the LMWH, enoxaparine, and unfractionated heparin ex vivo, with its ability to neutralize the bleeding side-effeets of both compounds in vivo. Bleeding was measured as the amount of blood lost from 5 cuts made in rabbits ears before and after treatment with enoxaparine or unfractionated heparin ± protamine sulfate. Plasma anti-factor Xa and anti-thrombin activities ex vivo, were measured chromogenically. Doses of 400 and 1,500 anti-factor Xa U/kg of heparin and enoxaparine, respectively, were required to enhance blood loss to the same extent. Protamine sulfate completely neutralized blood loss induced by both compounds, but did not neutralize the anti-factor Xa nor antithrombin activities ex vivo. We conclude that protamine sulfate is an effective antidote for the bleeding side-effeets of enoxaparine and unfractionated heparin, despite its inability to completely neutralize their anticoagulant activities.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1019-1019
Author(s):  
Darina Ocadlikova ◽  
Mariangela Lecciso ◽  
Elisa Orioli ◽  
Elena De Marchi ◽  
Sabina Sangaletti ◽  
...  

Abstract BACKGROUND: Overall survival of adult acute myeloid leukemia (AML) is still poor due to the lack of novel and effective therapies. In different malignancies including AML, some chemotherapy agents, such as daunorubicin (DNR) but not cytarabine (Ara-C), activate the immune response via the cross-priming of anti-tumor T cells by dendritic cells (DCs). Such process, known as immunogenic cell death (ICD), is characterized by intracellular and pericellular modifications of tumor cells, such as the cell surface translocation of calreticulin (CRT) and heat shock proteins 70/90 (HSPs 70/90), the extracellular release of ATP and pro-inflammatory factor HMGB1. Alongside with ICD, chemotherapy is known to induce inflammatory modifications within the tumor microenvironment, which may also elicit immunosuppressive pathways. In particular, DCs may be driven to acquire tolerogenic features, which may ultimately affect anti-tumor T-cell responses. In this study, we characterize ICD in AML to evaluate the involvement of some DC-related inhibitory pathways, such as the expression of indoleamine-2,3-dioxygenase 1 (IDO1) and the activation of PD-L1/PD-1 axis. METHODS: AML patients were analyzed at diagnosis.Before and after DNR-based chemotherapy, patient-derived T cells were extensively characterized by FACS and analyzed for their capacity to produce IFN-γ in response to autologous blasts. The AML cell line HL-60 and primary AML cells were then exposed, in vitro, to different drugs, including DNR and, as control drug, Ara-C. Dying cells were tested for the surface expression of CRT and HSPs 70/90, the release of HMGB1 and ATP. Functionally, immature DCs generated from healthy donors were pulsed with DNR-treated AML cells. Then, loaded DCs were tested for the expression of maturation-associated markers and of inhibitory pathways, such as IDO1 and PD-L1 and used to stimulate autologous CD3+ T cells. After co-culture, autologous healthy donor T cells were analyzed for IFN-g production, PD-1 expression and Tregs induction. A mouse model was set up to investigate in vivo the mechanism(s) underlying ICD in AML. The murine myelomonocytic leukemia cell line WEHI was transfected with luciferase PmeLUC probe, inoculated subcutaneously into BALB/c mice and used to measure in vivo ATP release after chemotherapy. Tumor-infiltrating T cells and DCs were characterized and correlated with ATP release. RESULTS: DNR treatment induced ICD-related modifications in both AML cell lines and primary blasts, including CRT, HSP70 and HSP90 exposure on cell surface, HMGB1 release from nucleus to cytoplasm and supernatant increase of ATP. Ex vivo, T-cell monitoring of DNR-treated AML patients displayed an increase in leukemia-specific IFN-g-producing CD4+ and CD8+ T cells in 20/28 evaluated patients. However, FACS analysis of CD8+ effector T cells emerging after chemotherapy showed a significant up-regulation of exhaustion marker such as LAG3 and PD-1, which paralleled with their reduced ability to produce active effector molecules, such as perforin and granzyme. Moreover, an increase of circulating Tregs was observed after DNR-based chemotherapy. In vitro, loading of chemotherapy-treated AML cells into DCs resulted not only in the induction of a maturation phenotype, but also in over-expression of inhibitory pathways, such as IDO1 and PD-L1. The silencing of IDO1 increased the capacity of DCs loaded with DNR-treated AML cells to induce leukemia-specific IFN-γ production by CD4+ and CD8+ T cells. In vivo, DNR therapy of mice inoculated with established murine AML cell line resulted in increased ATP release. Similarly to ex vivo and in vitro results, tumor-infiltrating DCs showed an increase in maturation status. Moreover, CD4+ and CD8+ T cells had increased IFN-γ production, but showed an exhausted phenotype. CONCLUSIONS: Our data confirm that chemotherapy-induced ICD may be active in AML and results in increased leukemia-specific T-cell immune response. However, a deep, ex vivo, in vitro and in vivo characterization of chemotherapy-induced T cells demonstrated an exhausted phenotype, which may be the result of the inhibitory pathways induction in DCs, such as IDO and PD-L1. The present data suggest that combination of chemotherapy with inhibitors of IDO1 and PD-L1 may represent an interesting approach to potentiate the immunogenic effect of chemotherapy, thus resulting in increased anti-leukemia immune response. Disclosures Cavo: Janssen-Cilag, Celgene, Amgen, BMS: Honoraria.


2001 ◽  
Vol 100 (4) ◽  
pp. 451-457 ◽  
Author(s):  
Anita ZETTERLUND ◽  
Paul HJEMDAHL ◽  
Kjell LARSSON

In vitro studies suggest that glucocorticoids may counteract β-agonist-induced desensitization of β-adrenoceptors by actions at the transcriptional level, but the clinical relevance of such findings is not clear. Oral terbutaline treatment decreases β-adrenoceptor sensitivity in alveolar macrophages in vivo. This effect is not counteracted by inhaled or orally taken steroids. We therefore examined whether inhaled terbutaline elicited a similar effect on β2-adrenoceptor sensitivity in alveolar macrophages, and if co-treatment with an inhaled steroid, budesonide, would prevent such down-regulation. Bronchoalveolar lavage (BAL) and lung function tests, including bronchodilator responses to inhaled terbutaline, were performed before and after 2 weeks of regular inhalation of terbutaline, 0.5 mg three times daily, and budesonide, 400 µg twice daily, or placebo, in 24 healthy volunteers. Four untreated subjects served as controls. A marked, approx. 90%, decrease in isoprenaline-induced cAMP accumulation in alveolar macrophages was found in both treatment groups after 2 weeks, with no difference between placebo and budesonide (P = 0.45). In the untreated control group, cAMP responses to both isoprenaline and prostaglandin E1 tended to be lower on the second occasion. A limited, non-specific desensitization of adenylate cyclase activity thus contributed to the marked desensitization elicited by terbutaline inhalations. The bronchodilator response to inhaled terbutaline did not change after treatment in any of the three groups (F = 0.9, P = 0.50). In conclusion, inhalation of a β-agonist induced marked down-regulation of β2-adrenoceptor sensitivity in alveolar macrophages in vivo without influencing the bronchodilator response to a β2-agonist in healthy subjects. Co-treatment with an inhaled steroid failed to counteract the desensitization of alveolar macrophage β2-adrenoceptors.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1290
Author(s):  
Hoang-Thanh Le ◽  
Nya L. Fraleigh ◽  
Jordan D. Lewicky ◽  
Justin Boudreau ◽  
Paul Dolinar ◽  
...  

The addictive nature of nicotine is likely the most significant reason for the continued prevalence of tobacco smoking despite the widespread reports of its negative health effects. Nicotine vaccines are an alternative to the currently available smoking cessation treatments, which have limited efficacy. However, the nicotine hapten is non-immunogenic, and successful vaccine formulations to treat nicotine addiction require both effective adjuvants and delivery systems. The immunomodulatory properties of short, non-natural peptide sequences not found in human systems and their ability to improve vaccine efficacy continue to be reported. The aim of this study was to determine if small “non-natural peptides,” as part of a conjugate nicotine vaccine, could improve immune responses. Four peptides were synthesized via solid phase methodology, purified, and characterized. Ex vivo plasma stability studies using RP-HPLC confirmed that the peptides were not subject to proteolytic degradation. The peptides were formulated into conjugate nicotine vaccine candidates along with a bacterial derived adjuvant vaccine delivery system and chitosan as a stabilizing compound. Formulations were tested in vitro in a dendritic cell line to determine the combination that would elicit the greatest 1L-1β response using ELISAs. Three of the peptides were able to enhance the cytokine response above that induced by the adjuvant delivery system alone. In vivo vaccination studies in BALB/c mice demonstrated that the best immune response, as measured by nicotine-specific antibody levels, was elicited from the conjugate vaccine structure, which included the peptide, as well as the other components. Isotype analyses highlighted that the peptide was able to shift immune response toward being more humorally dominant. Overall, the results have implications for the use of non-natural peptides as adjuvants not only for the development of a nicotine vaccine but also for use with other addictive substances and conventional vaccination targets as well.


2021 ◽  
Vol 12 ◽  
Author(s):  
Noemi Rebecca Meier ◽  
Manuel Battegay ◽  
Tom H. M. Ottenhoff ◽  
Hansjakob Furrer ◽  
Johannes Nemeth ◽  
...  

Background: In individuals living with HIV infection the development of tuberculosis (TB) is associated with rapid progression from asymptomatic TB infection to active TB disease. Sputum-based diagnostic tests for TB have low sensitivity in minimal and subclinical TB precluding early diagnosis. The immune response to novel Mycobacterium tuberculosis in-vivo expressed and latency associated antigens may help to measure the early stages of infection and disease progression and thereby improve early diagnosis of active TB disease.Methods: Serial prospectively sampled cryopreserved lymphocytes from patients of the Swiss HIV Cohort Study developing TB disease (“cases”) and matched patients with no TB disease (“controls”) were stimulated with 10 novel Mycobacterium tuberculosis antigens. Cytokine concentrations were measured in cases and controls at four time points prior to diagnosis of TB: T1-T4 with T4 being the closest time point to diagnosis.Results: 50 samples from nine cases and nine controls were included. Median CD4 cell count at T4 was 289/ul for the TB-group and 456/ul for the control group. Viral loads were suppressed in both groups. At T4 Rv2431c-induced and Rv3614/15c-induced interferon gamma-induced protein (IP)-10 responses and Rv2031c-induced and Rv2346/Rv2347c-induced tumor necrosis factor (TNF)-α responses were significantly higher in cases compared to controls (p &lt; 0.004). At T3 - being up to 2 years prior to TB diagnosis - Rv2031c-induced TNF-α was significantly higher in cases compared to controls (p &lt; 0.004). Area under the receiver operating characteristics (AUROC) curves resulted in an AUC &gt; 0.92 for all four antigen-cytokine pairs.Conclusion: The in vitro Mycobacterium tuberculosis-specific immune response in HIV-infected individuals that progress toward developing TB disease is different from those in HIV-infected individuals that do not progress to developing TB. These differences precede the clinical diagnosis of active TB up to 2 years, paving the way for the development of immune based diagnostics to predict TB disease at an early stage.


2015 ◽  
Vol 33 (2) ◽  
pp. 260-263 ◽  
Author(s):  
Detlef Schuppan ◽  
Victor Zevallos

While the central role of an adaptive, T cell-mediated immune response to certain gluten peptides in celiac disease is well established, the innate immune response to wheat proteins remains less well defined. We identified wheat amylase trypsin inhibitors (ATIs), but not gluten, as major stimulators of innate immune cells (dendritic cells > macrophages > monocytes), while intestinal epithelial cells were nonresponsive. ATIs bind to and activate the CD14-MD2 toll-like receptor 4 (TLR4) complex. This activation occurs both in vitro and in vivo after oral ingestion of purified ATIs or gluten, which is usually enriched in ATIs. Wheat ATIs represent a family of up to 17 proteins with molecular weights of around 15 kDa and a variable primary but conserved secondary structure characterized by 5 intrachain disulfide bonds and alpha helices. They mostly form di- and tetramers that appear to equally activate TLR4. Relevant biological activity is confined to ATIs in gluten-containing cereals, while gluten-free cereals display no or minimal activities. ATIs represent up to 4% of total wheat protein and are highly resistant to intestinal proteases. In line with their dose-dependent function as co-stimulatory molecules in adaptive immunity of celiac disease, they appear to play a role in promoting other immune-mediated diseases within and outside the GI tract. Thus, ATIs may be prime candidates of severe forms of non-celiac gluten (wheat) sensitivity.


2019 ◽  
Vol 111 (11) ◽  
pp. 1216-1227 ◽  
Author(s):  
Motonari Nomura ◽  
Nino Rainusso ◽  
Yi-Chien Lee ◽  
Brian Dawson ◽  
Cristian Coarfa ◽  
...  

Abstract Background The Wnt/β-catenin pathway is closely associated with osteosarcoma (OS) development and metastatic progression. We investigated the antitumor activity of Tegavivint, a novel β-catenin/transducin β-like protein 1 (TBL1) inhibitor, against OS employing in vitro, ex vivo, and in vivo cell line and patient-derived xenograft (PDX) models that recapitulate high risk disease. Methods The antitumor efficacy of Tegavivint was evaluated in vitro using established OS and PDX-derived cell lines. Use of an ex vivo three-dimensional pulmonary metastasis assay assessed targeting of β-catenin activity during micro- and macrometastatic development. The in vivo activity of Tegavivint was evaluated using chemoresistant and metastatic OS PDX models. Gene and protein expression were quantified by quantitative Reverse transcription polymerase chain reaction or immunoblot analysis. Bone integrity was determined via microCT. All statistical tests were two-sided. Results Tegavivint exhibited antiproliferative activity against OS cells in vitro and actively reduced micro- and macrometastatic development ex vivo. Multiple OS PDX tumors (n = 3), including paired patient primary and lung metastatic tumors with inherent chemoresistance, were suppressed by Tegavivint in vivo. We identified that metastatic lung OS cell lines (n = 2) exhibited increased stem cell signatures, including enhanced concomitant aldehyde dehydrogenase (ALDH1) and β-catenin expression and downstream activity, which were suppressed by Tegavivint (ALDH1: control group, mean relative mRNA expression = 1.00, 95% confidence interval [CI] = 0.68 to 1.22 vs Tegavivint group, mean = 0.011, 95% CI = 0.0012 to 0.056, P < .001; β-catenin: control group, mean relative mRNA expression = 1.00, 95% CI = 0.71 to 1.36 vs Tegavivint group, mean = 0.45, 95% CI = 0.36 to 0.52, P < .001). ALDH1high PDX-derived lung OS cells, which demonstrated enhanced metastatic potential compared with ALDHlow cells in vivo, were sensitive to Tegavivint. Toxicity studies revealed decreased bone density in male Tegavivint-treated mice (n = 4 mice per group). Conclusions Tegavivint is a promising therapeutic agent for advanced stages of OS via its targeting of the β-catenin/ALDH1 axis.


Sign in / Sign up

Export Citation Format

Share Document