scholarly journals Probiotic Interventions Alleviate Food Allergy Symptoms Correlated With Cesarean Section: A Murine Model

2021 ◽  
Vol 12 ◽  
Author(s):  
Bi-Ying Jin ◽  
Zhen Li ◽  
Ya-Nan Xia ◽  
Li-Xiang Li ◽  
Zi-Xiao Zhao ◽  
...  

Delivery by cesarean section (CS) is linked to an increased incidence of food allergies in children and affects early gut microbiota colonization. Furthermore, emerging evidence has connected disordered intestinal microbiota to food allergies. Here, we investigated the impact of CS on a rat model for food allergy to ovalbumin (OVA). Rats delivered by CS were found to be more responsive to OVA sensitization than vaginally born ones, displaying a greater reduction in rectal temperature upon challenge, worse diarrhea, and higher levels of OVA-specific antibodies and histamine. 16S rRNA sequencing of feces revealed reduced levels of Lactobacillus and Bifidobacterium in the CS rats. Preventative supplementation with a probiotic combination containing Lactobacillus and Bifidobacterium could protect CS rats against an allergic response to OVA, indicating that the microbiota dysbiosis contributes to CS-related response. Additionally, probiotic intervention early in life might help to rebuild aberrant Th2 responses and tight junction proteins, both of which have been linked to CS-related high allergic reactions. Taken together, this study shows that disordered intestinal microbiota plays an essential role in the pathogenesis of food allergy mediated by CS. More importantly, interventions that modulate the microbiota composition in early life are therapeutically relevant for CS-related food allergies.

2005 ◽  
Vol 64 (4) ◽  
pp. 470-474 ◽  
Author(s):  
René Crevel

Serious attempts to estimate the impact of allergic reactions to foods on public health did not begin until the 1980s. Until about 15 years ago food allergy was considered a minor aspect of food safety. Two developments probably prompted a radical re-appraisal of that situation. The first was the apparently inexorable rise in the prevalence of atopic diseases, of which food allergy forms a part, with its possible consequences highlighted by some well-publicised severe reactions. The second was the growth of genetic modification technology, manifested by the commercialisation of transgenic crops. Each of these developments impacted on the food industry in distinct ways. On the one hand, consumers with food allergies had to be enabled to avoid specific allergens in products formulated with existing ingredients. Food manufacturers therefore had to identify those specific allergens down to trace amounts in all the ingredients forming the product and label or remove them. On the other hand, the introduction of products using ingredients from novel sources required an assessment of the allergenicity of these ingredients as an integral part of safety assurance. The approaches used by the food industry to protect existing consumers who have food allergies and those at potential risk of sensitisation from novel proteins will be illustrated, emphasising how they need to be built into every stage of the life cycle of a product.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3315
Author(s):  
Qiuyu Zhang ◽  
Lei Cheng ◽  
Junjuan Wang ◽  
Mengzhen Hao ◽  
Huilian Che

(1) Background: The use of antibiotics affects the composition of gut microbiota. Studies have suggested that the colonization of gut microbiota in early life is related to later food allergies. Still, the relationship between altered intestinal microbiota in adulthood and food allergies is unclear. (2) Methods: We established three mouse models to analyze gut microbiota dysbiosis’ impact on the intestinal barrier and determine whether this effect can increase the susceptibility to and severity of food allergy in later life. (3) Results: The antibiotic-induced gut microbiota dysbiosis significantly reduced Lachnospiraceae, Muribaculaceae, and Ruminococcaceae, and increased Enterococcaceae and Clostridiales. At the same time, the metabolic abundance was changed, including decreased short-chain fatty acids and tryptophan, as well as enhanced purine. This change is related to food allergies. After gut microbiota dysbiosis, we sensitized the mice. The content of specific IgE and IgG1 in mice serum was significantly increased, and the inflammatory response was enhanced. The dysbiosis of gut microbiota caused the sensitized mice to have more severe allergic symptoms, ruptured intestinal villi, and a decrease in tight junction proteins (TJs) when re-exposed to the allergen. (4) Conclusions: Antibiotic-induced gut microbiota dysbiosis increases the susceptibility and severity of food allergies. This event may be due to the increased intestinal permeability caused by decreased intestinal tight junction proteins and the increased inflammatory response.


2017 ◽  
Vol 54 (3) ◽  
pp. 346
Author(s):  
Chhavi Arya ◽  
Chetna Jantwal

Food allergens are the substances present in food that cause food allergy. Human body reactions to food allergens range from mild to severe life threatening anaphylactic shock. At least seventy different foods have been reported to cause allergic reactions and several other foods have been identified which have the potential to provoke allergic reactions. Majority of the identified food allergens are proteins. The Food Allergen Labeling and Consumer Protection Act (FALCPA) identifies eight major food groups i.e. milk, eggs, fish, crustacean shellfish, tree nuts, peanuts, wheat, and soybeans as major allergy causing foods. These eight foods are believed to account for 90 per cent of food allergies and are responsible for most serious reactions to foods. Several studies have been done which identify the major allergens in various foods. The present paper attempts to review the major allergens present in various food.


2002 ◽  
Vol 30 (6) ◽  
pp. 941-944 ◽  
Author(s):  
R. Crevel

Serious attempts to estimate the impact of allergic reactions to foods on public health did not begin until the 1980s. Until about 15 years ago, food allergy was considered a minor aspect of food safety. Two developments probably prompted a radical re-appraisal of that situation. The first was the apparently inexorable rise in the prevalence of atopic diseases, of which food allergy forms a part, with its possible consequences highlighted by some well publicised severe reactions. The second was the growth of genetic modification technology, manifested by the commercialization of transgenic crops. Each of these developments impacted on the food industry in distinct ways. On the one hand, food-allergic consumers had to be enabled to avoid specific allergens in products formulated with existing ingredients. Food manufacturers therefore had to identify those specific allergens down to trace amounts in all the ingredients forming the product, and label or remove them. On the other hand, the introduction of products using ingredients from novel sources required an assessment of the allergenicity of these ingredients as an integral part of safety assurance. The approaches used by the food industry to protect existing allergic consumers and those at potential risk of sensitization by novel proteins will be illustrated, emphasizing how they need to be built into every stage of the life cycle of a product.


2020 ◽  
Vol 33 (11) ◽  
pp. 1797-1808
Author(s):  
Chi Huan Chang ◽  
Po Yun Teng ◽  
Tzu Tai Lee ◽  
Bi Yu

Objective: This study assessed the effects of probiotics on cecal microbiota, gene expression of intestinal tight junction proteins, and immune response in the cecal tonsil of broiler chickens challenged with Salmonella enterica subsp. enterica.Methods: One-day-old broiler chickens (n = 240) were randomly allocated to four treatments: negative control (Cont), multi-strain probiotic-treated group (Pro), Salmonella-infected group (Sal), and multi-strain probiotic-treated and Salmonella-infected group (ProSal). All chickens except those in the Cont and Pro groups were gavaged with 1×10<sup>8</sup> cfu/mL of S. enterica subsp. enterica 4 days after hatching.Results: Our results indicated that body weight, weight gain, and feed conversion ratio of birds were significantly reduced (p<0.05) by Salmonella challenge. Chickens challenged with Salmonella decreased cecal microbial diversity. Chickens in the Sal group exhibited abundant Proteobacteria than those in the Cont, Pro, and ProSal groups. Salmonella infection downregulated gene expression of Occludin, zonula occludens-1 (ZO1), and Mucin 2 in the jejunum and Occludin and Claudin in the ileum. Moreover, the Sal group increased gene expression of interferon-γ (IFN-γ), interleukin-6 (IL-6), IL-1β, and lipopolysaccharide-induced tumor necrosis factor-alpha factor (LITAF) and reduced levels of transforming growth factor-β4 and IL-10 compared with the other groups (p<0.05). However, chickens receiving probiotic diets increased Lactobacillaceae abundance and reduced Enterobacteriaceae abundance in the ceca. Moreover, supplementation with probiotics increased the mRNA expression of Occludin, ZO1, and Mucin 2 in the ileum (p<0.05). In addition, probiotic supplementation downregulated the mRNA levels of IFN-γ (p<0.05) and LITAF (p = 0.075) and upregulated IL-10 (p = 0.084) expression in the cecal tonsil.Conclusion: The administration of multi-strain probiotics modulated intestinal microbiota, gene expression of tight junction proteins, and immunomodulatory activity in broiler chickens.


2021 ◽  
Vol 42 (2) ◽  
pp. 118-123
Author(s):  
Aikaterini Anagnostou

Food allergies are common and affect 6‐8% of children in the United States; they pose a significant burden on the quality of life of children with allergy and their caregivers due to multiple daily restrictions. Despite the recommended dietary avoidance, reactions tend to occur due to unintentional exposure to the allergenic food trigger. Fear of accidental ingestions with potentially severe reactions, including anaphylaxis and death, creates anxiety in individuals with food allergy. Oral immunotherapy has emerged as a form of active and potentially disease-modifying treatment for common food allergies encountered in childhood. The efficacy of oral immunotherapy is high, with the majority of participants achieving desensitization and, as a result, protection from trace exposures and improved quality of life. The main risk of oral immunotherapy consists of allergic reactions to treatment. In general, rates of allergic reactions and anaphylaxis are reported to be higher in individuals pursuing therapy options, but most subjects who undergo oral immunotherapy will likely experience mild or moderate reactions during treatment. Adverse events tend to reduce in both frequency and number in the maintenance period. The use of immune modulators alongside oral immunotherapy has been suggested, with the aim to improve efficacy and safety, and to facilitate the overall process. It is evident that the landscape of food allergy management is changing and that the future looks brighter, with different options emerging over time. The process of how to choose the appropriate option becomes a discussion between the clinician and the patient, which involves a joint review of the current medical evidence but also the patient's preference for balancing particular attributes of the treatment. By working together, providers and patients will ensure achievement of the best possible outcome for children with food allergies.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Paige Cook ◽  
Meghan McDonough

Food allergy training for teachers remains an important, but commonly overlooked, aspect of education as millions of children have been diagnosed with food allergies. Therefore, it is pertinent teachers receive food allergy training that is most beneficial in growing a teacher's understanding for teachers to be best suited in correctly helping food allergic students. Four food allergy training methods: hands-on in-person (actual handling of epinephrine), non-hands in-person, group video, and individual video, and their effects on the self-efficacy of participants is the focus of this study. Teachers were contacted from within the city of Chicago, both public and private, and from a mixture of food allergy training methods and were administered an online survey which asked questions pertaining to their food allergy knowledge, perception, and self-efficacy. Participants were given statements to which they would respond on a five-point Likert scale, scored using a chi-square test. Ultimately, the hypothesis that teachers who engaged in hands-on in-person would showcase higher levels of self-efficacy, due to higher levels of engagement, was not supported. While several statements proved significant after data analysis, there was not enough significance to prove a meaningful relationship between the self-efficacy and training method.


2018 ◽  
Vol 101 (1) ◽  
pp. 91-95 ◽  
Author(s):  
René R W Crevel ◽  
Stefan Ronsmans ◽  
Cyril F M Marsaux ◽  
Diána Bánáti

Abstract The International Life Sciences Institute (ILSI) Europe Food Allergy Task Force was founded in response to early public concerns about the growing impact of food allergies almost coincidentally with the publication of the 1995 Food and Agriculture Organization-World Health Organization Technical Consultation on Food Allergies. In line with ILSI principles aimed to foster collaboration between stakeholders to promote consensus on science-based approaches to food safety and nutrition, the task force has played a central role since then in the development of risk assessment for food allergens. This ranged from consideration of the criteria to be applied to identifying allergens of public health concern through methodologies to determine the relationship between dose and the proportion of allergic individuals reacting, as well as the nature of the observed responses. The task force also promoted the application of novel, probabilistic risk assessment methods to better delineate the impact of benchmarks, such as reference doses, and actively participated in major European food allergy projects, such as EUROPREVALL, the European Union (EU)-funded project “The prevalence, cost and basis of food allergy across Europe;” and iFAAM, “Integrated approaches to food allergen and allergy risk management,” also an EU-funded project. Over the years, the task force’s work has evolved as answers to initial questions raised further issues: Its current work program includes a review of analytical methods and how different ones can best be deployed given their strengths and limitations. Another activity, which has just commenced, aims to develop a framework for stakeholders to achieve consensus on acceptable risk.


2008 ◽  
Vol 295 (5) ◽  
pp. G1025-G1034 ◽  
Author(s):  
Julia B. Ewaschuk ◽  
Hugo Diaz ◽  
Liisa Meddings ◽  
Brendan Diederichs ◽  
Andrea Dmytrash ◽  
...  

Live probiotic bacteria are effective in reducing gut permeability and inflammation. We have previously shown that probiotics release peptide bioactive factors that modulate epithelial resistance in vitro. The objectives of this study were to determine the impact of factors released from Bifidobacteria infantis on intestinal epithelial cell permeability and tight junction proteins and to assess whether these factors retain their bioactivity when administered to IL-10-deficient mice. B. infantis conditioned medium (BiCM) was applied to T84 human epithelial cells in the presence and absence of TNF-α and IFN-γ. Transepithelial resistance (TER), tight junction proteins [claudins 1, 2, 3, and 4, zonula occludens (ZO)-1, and occludin] and MAP kinase activity (p38 and ERK) were examined. Acute effects of BiCM on intestinal permeability were assessed in colons from IL-10-deficient mice in Ussing chambers. A separate group of IL-1-deficient mice was treated with BiCM for 4 wk and then assessed for intestinal histological injury, cytokine levels, epithelial permeability, and immune response to bacterial antigens. In T84 cells, BiCM increased TER, decreased claudin-2, and increased ZO-1 and occludin expression. This was associated with enhanced levels of phospho-ERK and decreased levels of phospho-p38. BiCM prevented TNF-α- and IFN-γ-induced drops in TER and rearrangement of tight junction proteins. Inhibition of ERK prevented the BiCM-induced increase in TER and attenuated the protection from TNF-α and IFN-γ. Oral BiCM administration acutely reduced colonic permeability in mice whereas long-term BiCM treatment in IL-10-deficient mice attenuated inflammation, normalized colonic permeability, and decreased colonic and splenic IFN-γ secretion. In conclusion, peptide bioactive factors from B. infantis retain their biological activity in vivo and are effective in normalizing gut permeability and improving disease in an animal model of colitis. The effects of BiCM are mediated in part by changes in MAP kinases and tight junction proteins.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yu Jiang ◽  
Yue Wan ◽  
Jing Li ◽  
Yueshui Zhao ◽  
Yongshun Ma ◽  
...  

Gut microbiota is a complex aggregation of microbial organisms, which offers diverse protective benefits to the host. Dysbiosis of intestinal microbiota is frequently associated with many diseases. Vitamin D3 (VD), which was originally associated with bone health, also possesses antimicrobial activities and can act through antimicrobial peptide. Cathelicidin is a type of antimicrobial peptide in host to maintain the balance of gut microbiome. Our current study sought to evaluate the protective effect of VD and cathelicidin in mice intestines by administration of VD or mCRAMP-encoding L. lactis. We herein provided a comprehensive profile of the impact of VD and mCRAMP on gut microbiota using 16S rRNA sequencing, followed by bioinformatics and statistical analysis. Our results revealed an increased richness of bacterial community in mice intestines due to VD administration. Moreover, we showed a beneficial effect of VD and mCRAMP by enhancing the colonization of bacterial taxa that are associated with protective effects to the host but repressing the propagation of bacterial taxa that are associated with harmful effects to the host. Various metabolic pathways related to amino acid and lipid metabolism were affected in this process. We further established a bacterial panel as a reliable biomarker to evaluate the efficacy of remodeling the mice gut microbiota by VD and mCRAMP administration. The uncovered effects will deepen the comprehension about the antibacterial mechanisms of VD and mCRAMP and provide new insights for therapeutic implication of them.


Sign in / Sign up

Export Citation Format

Share Document