scholarly journals Vaccination of Gilthead Seabream After Continuous Xenoestrogen Oral Exposure Enhances the Gut Endobolome and Immune Status via GPER1

2021 ◽  
Vol 12 ◽  
Author(s):  
Pablo Castejón ◽  
Isabel Cabas ◽  
Victoria Gómez ◽  
Elena Chaves-Pozo ◽  
Isabel Cerezo-Ortega ◽  
...  

In fish culture settings, the exogenous input of steroids is a matter of concern. Recently, we unveiled that in the gilthead seabream (Sparus aurata), the G protein-coupled estrogen receptor agonist G-1 (G1) and the endocrine disruptor 17α-ethinylestradiol (EE2) are potent modulators in polyreactive antibody production. However, the integral role of the microbiota upon immunity and antibody processing in response to the effect of EE2 remains largely unexplored. Here, juvenile seabreams continuously exposed for 84 days to oral G1 or EE2 mixed in the fish food were intraperitoneally (i.p.) immune primed on day 42 with the model antigen keyhole limpet hemocyanin (KLH). A critical panel of systemic and mucosal immune markers, serum VTG, and humoral, enzymatic, and bacteriolytic activities were recorded and correlated with gut bacterial metagenomic analysis 1 day post-priming (dpp). Besides, at 15 dpp, animals received a boost to investigate the possible generation of specific anti-KLH antibodies at the systemic and mucosal interphases by the end of the trial. On day 43, EE2 but not G1 induced a significant shift in the serum VTG level of naive fish. Simultaneously, significant changes in some immune enzymatic activities in the serum and gut mucus of the EE2-treated group were recorded. In comparison, the vaccine priming immunization resulted in an attenuated profile of most enzymatic activities in the same group. The gut genes qPCR analysis exhibited a related pattern, only emphasized by a significant shift in the EE2 group’s il1b expression. The gut bacterial microbiome status underwent 16S rRNA dynamic changes in alpha diversity indices, only with the exposure to oral G1, supporting functional alterations on cellular processes, signaling, and lipid metabolism in the microbiota. By the same token, the immunization elevated the relative abundance of Fusobacteria only in the control group, while this phylum was depleted in both the treated groups. Remarkably, the immunization also promoted changes in the bacterial class Betaproteobacteria and the estrogen-associated genus Novosphingobium. Furthermore, systemic and mucosal KLH-specific immunoglobulin (Ig)M and IgT levels in the fully vaccinated fish showed only slight changes 84 days post-estrogenic oral administration. In summary, our results highlight the intrinsic relationship among estrogens, their associated receptors, and immunization in the ubiquitous fish immune regulation and the subtle but significant crosstalk with the gut endobolome.

2012 ◽  
Vol 5 (4) ◽  
pp. 192-200 ◽  
Author(s):  
Vivek Kumar Dwivedi ◽  
Anuj Bhatanagar ◽  
Manu Chaudhary

ABSTRACT We investigated the protective role of ceftriaxone plus sulbactam with VRP1034 (Elores) on hematological, lipid peroxidation, antioxidant enzymatic activities and Cd levels in the blood and tissues of cadmium exposed rats. Twenty-four male rats were divided into three groups of eight rats each. The control group received distilled water whereas group II received CdCl2 (1.5 mg/4 ml/body weight) through gastric gavage for 21 days. Group III received CdCl2 and was treated with ceftriaxone plus sulbactam with VRP1034 for 21 days. The hematological, biochemical, lipid per-oxidation levels and enzymatic parameters were measured in plasma and tissues (brain, liver and kidney) of all groups. The Cd, Zn and Fe levels were measured in blood and tissues of all groups. Our findings showed significantly decreased cadmium (p<0.001), malonaldialdehyde (p<0.001) and myloperoxidase (MPO) levels along with significantly increased hemoglobin (p<0.01), RBC (p<0.05), hematocrit (p<0.05) levels and all antioxidant enzymatic activities (SOD, CAT, GR, GPx) in plasma and tissues of ceftriaxone plus sulbactam with VRP1034 treated group as compared to cadmium exposed group. Delta aminolevulinate dehydratase (δ-ALAD) activity was significantly (p<0.001) increased in the blood of ceftriaxone plus sulbactam with VRP1034 treated group as compared with cadmium exposed group. The levels of hepatic and renal parameters were significantly (p<0.001) decreased in ceftriaxone plus sulbactam with VRP1034 treated group as compared to cadmium exposed group. These findings indicate that ceftriaxone plus sulbactam with VRP1034 acts as a potent free radical scavenger and exhibits metal chelating properties that reduce free radical mediated tissue injury and prevent dysfunction of hepatic and renal organs during metal intoxication.


2021 ◽  
Vol 22 (23) ◽  
pp. 13118
Author(s):  
Maria D. Ayala ◽  
Victoria Gómez ◽  
Isabel Cabas ◽  
María P. García Hernández ◽  
Elena Chaves-Pozo ◽  
...  

Endocrine-disrupting chemicals include natural and synthetic estrogens, such as 17α-ethynilestradiol (EE2), which can affect reproduction, growth and immunity. Estrogen signalling is mediated by nuclear or membrane estrogen receptors, such as the new G-protein-coupled estrogen receptor 1 (GPER1). The present work studies the effect of EE2 and G1 (an agonist of GPER1) on body and muscle parameters and growth-related genes of 54 two-year-old seabreams. The fish were fed a diet containing EE2 (EE2 group) and G1 (G1 group) for 45 days and then a diet without EE2 or G1 for 122 days. An untreated control group was also studied. At 45 days, the shortest body length was observed in the G1 group, while 79 and 122 days after the cessation of treatments, the shortest body growth was observed in the EE2 group. Hypertrophy of white fibers was higher in the EE2 and G1 groups than it was in the control group, whereas the opposite was the case with respect to hyperplasia. Textural hardness showed a negative correlation with the size of white fibers. At the end of the experiment, all fish analyzed in the EE2 group showed a predominance of the gonadal ovarian area. In addition, the highest expression of the mafbx gene (upregulated in catabolic signals) and mstn2 (myogenesis negative regulator) was found in EE2-exposed fish.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Qing Tong ◽  
Li-Yong Cui ◽  
Jia Bie ◽  
Xiao-Yun Han ◽  
Zong-Fu Hu ◽  
...  

Abstract Background Captive amphibians frequently receive antibiotic baths to control bacterial diseases. The potential collateral effect of these antibiotics on the microbiota of frogs is largely unknown. To date, studies have mainly relied on oral administration to examine the effects of antibiotics on the gut microbiota; in contrast, little is known regarding the effects of bath-applied antibiotics on the gut microbiota. The gut microbiota compositions of the gentamicin, recovery, and control groups were compared by Illumina high-throughput sequencing, and the functional profiles were analysed using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). Furthermore, the relationship between the structure and predicted functional composition of the gut microbiota was determined. Results The alpha diversity indices were significantly reduced by the gentamicin bath, illustrating that this treatment significantly changed the composition of the gut microbiota. After 7 days, the gut microbiota of the recovery group was not significantly different from that of the gentamicin group. Forty-four indicator taxa were selected at the genus level, comprising 42 indicators representing the control group and 2 indicators representing the gentamicin and recovery groups. Potential pathogenic bacteria of the genera Aeromonas, Citrobacter, and Chryseobacterium were significantly depleted after the gentamicin bath. There was no significant positive association between the community composition and functional composition of the gut microbiota in the gentamicin or control frogs, indicating that the functional redundancy of the gut bacterial community was high. Conclusions Gentamicin significantly changed the structure of the gut microbiota of R. dybowskii, and the gut microbiota exhibited weak resilience. However, the gentamicin bath did not change the functional composition of the gut microbiota of R. dybowskii, and there was no significant correlation between the structural composition and the functional composition of the gut microbiota.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 269
Author(s):  
Miguel Rabelo-Ruiz ◽  
Claudia Teso-Pérez ◽  
Juan Manuel Peralta-Sánchez ◽  
Juan José Ariza ◽  
Antonio Manuel Martín-Platero ◽  
...  

Antimicrobial resistance (AMR) has risen as a global threat for human health. One of the leading factors for this emergence has been the massive use of antibiotics growth-promoter (AGPs) in livestock, enhancing the spread of AMR among human pathogenic bacteria. Thus, several alternatives such as probiotics, prebiotics, or phytobiotics have been proposed for using in animal feeding to maintain or improve productive levels while diminishing the negative effects of AGPs. Reducing the use of antibiotics is a key aspect in the pig rearing for production reasons, as well as for the production of high-quality pork, acceptable to consumers. Here we analyze the potential use of Allium extract as an alternative. In this study, weaned piglets were fed with Allium extract supplementation and compared with control and antibiotic (colistin and zinc oxide) treated piglets. The effects of Allium extract were tested by analyzing the gut microbiome and measuring different productive parameters. Alpha diversity indices decreased significantly in Allium extract group in caecum and colon. Regarding beta diversity, significant differences between treatments appeared only in caecum and colon. Allium extract and antibiotic piglets showed better values of body weight (BW), average daily weight gain (ADG), and feed conversion ratio (FCR) than control group. These results indicate that productive parameters can be implemented by modifying the gut microbiota through phytobiotics such as Allium extract, which will drive to drop the use of antibiotics in piglet diet.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yini Dang ◽  
Xintong Zhang ◽  
Yu Zheng ◽  
Binbin Yu ◽  
Dijia Pan ◽  
...  

Objectives. Functional prognosis is potentially correlated with gut microbiota alterations following the dysregulation of the gut-microbiota-brain axis after stroke. This study was designed to explore the poststroke alterations of gut microbiota and potential correlations between gut microbiota and global functions. Methods. A total of thirty-eight patients with stroke and thirty-five healthy demographics-matched controls were recruited. Their fecal DNAs were extracted, and the V3-V4 regions of the conserved bacterial 16S RNA were amplified and sequenced on the Illumina MiSeq platform. Microbial composition, diversity indices, and species cooccurrence were compared between groups. Random forest and receiver operating characteristic analysis were used to identify potential diagnostic biomarkers. Relationships between discriminant bacteria and poststroke functional outcomes were estimated. Results. Higher alpha diversity of gut microbiota was observed in poststroke patients as compared to the healthy controls ( p < 0.05 ). Beta diversity showed that microbiota composition in the poststroke group was significantly different from that in the control group. Relative abundance of nine genera increased significantly in poststroke patients, while 82 genera significantly decreased ( p < 0.05 ). The accuracy, specificity, and susceptibility of the optimal model consisted of the top 10 discriminant species were 93%, 100%, and 86%, respectively. Subgroup analysis showed that bacterial taxa abundant between subacute and chronic stroke patients were overall different ( p < 0.05 ). The modified Rankin scale (mRS) ( r = − 0.370 , p < 0.05 ), Fugl-Meyer assessment (FMA) score ( r = 0.364 , p < 0.05 ), water swallow test (WST) ( r = 0.340 , p < 0.05 ), and Barthel index (BI) ( r = 0.349 , p < 0.05 ) were significantly associated with alterations of distinctive gut microbiota. Conclusions. The gut microbiota in patients with stroke was significantly changed in terms of richness and composition. Significant associations were detected between alterations of distinctive gut microbiota and global functional prognosis. It would facilitate novel treatment target selection in the context of stroke while the causal relationships between distinctive gut microbiota alterations and functional variations need to be further verified with well-designed studies.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1423
Author(s):  
Antonia M. Jiménez-Monreal ◽  
Francisco A. Guardiola ◽  
M. Ángeles Esteban ◽  
M. Antonia Murcia Tomás ◽  
Magdalena Martínez-Tomé

Gilthead seabream is bred mainly in fish farms in the Mediterranean Sea. One important factor responsible for the deterioration of fish quality is lipid oxidation. Moringa oleifera leaves have been described as having high antioxidant content. This work investigates the effect of dietary supplementation with Moringa leaves on the antioxidant activity of seabream. Gilthead seabream specimens were divided into four groups, the control group (fed a commercial diet) and three other groups fed diets enriched with Moringa (5%, 10% and 15%). The antioxidant capacity was measured by assays of free radical scavenging (OH·, H2O2, lipoperoxyl and ABTS), Rancimat test and linoleic acid system in muscle and skin of gilthead seabream, commercial diet, enriched diet and Moringa. Finally, the polyphenol content of Moringa and the fatty acid composition of seabream fed diets with and without Moringa were determined. Results showed an increase in antioxidant activity in gilthead seabream fed with diets enriched with a higher percentage of Moringa; therefore, Moringa could be considered a functional ingredient in diets for fish bred in fish farms and. The antioxidant potential of Moringa leaves could be mainly attributed to the presence of polyphenolic compounds.


Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2270
Author(s):  
María Dolores Ayala ◽  
Carolina Galián ◽  
Victoria Fernández ◽  
Elena Chaves-Pozo ◽  
Daniel García de la Serrana ◽  
...  

A 90-d feeding trial was conducted in which five groups of gilthead seabream (11.96 g initial body weight) were fed with a microalgae-free diet (control group, C) or four diets containing the microalgae Nannochloropsis gaditana at two inclusion levels (2.5% or 5%), either raw (R2.5 and R5 batches) or cellulose-hydrolyzed (H2.5 and H5 batches), to study their effect on the body and muscle growth. At 40 days, the highest values of body length and weight were reached in R5 group, but at 64 and 90 days, these were reached in R2.5. However, feed conversion rate, specific growth, daily intake, and survival (100%) were similar in all the groups. The acquisition of a discoid body shape was accelerated depending on the inclusion level of N. gaditana in the diets. Moreover, H5 diet affected the fish geometric morphology compared to R5 diet. The white muscle transverse area was similar in all groups at 40 days, with the exception of H2.5 group, which showed the lowest area. At day 90, C and R2.5 displayed the highest muscle growth, attributable to increased hyperplasia in C, and higher hypertrophy in R2.5. However, the highest proportion of small and medium fibers was observed in R5 and H5.


2021 ◽  
Vol 8 ◽  
Author(s):  
Baikui Wang ◽  
Yuanhao Zhou ◽  
Li Tang ◽  
Zihan Zeng ◽  
Li Gong ◽  
...  

The aim of this study was to evaluate the dietary effects of Bacillus amyloliquefaciens SC06 (SC06) instead of antibiotics on the growth performance, intestinal health, and intestinal microbiota of broilers. A total of 360 30-day-old Lingnan yellow broilers were randomly allocated into two groups with six replicates per group (30 birds per replicate). The broilers were fed either a non-supplemented diet or a diet supplemented with 108 colony-forming units lyophilized SC06 per kilogram feed for 30 days. Results showed that SC06 supplementation had no effect on the growth performance compared with that of the control group. SC06 treatment significantly (P &lt;0.05) increased the total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD) activity in the liver, and the activities of trypsin, α-amylase (AMS), and Na+K+-ATPase in the ileum, whereas it decreased (P &lt; 0.05) lipase, gamma glutamyl transpeptidase (γ-GT), and maltase activities in the ileum. Meanwhile, SC06 treatment also improved the immune function indicated by the significantly (P &lt; 0.05) increased anti-inflammatory cytokine [interleukin (IL)-10] level and the decreased (P &lt; 0.05) pro-inflammatory cytokine [IL-6 and tumor necrosis factor (TNF)-α] levels in the ileum. Furthermore, we also found that SC06 enhanced the intestinal epithelial intercellular integrity (tight junction and adhesion belt) in the ileum. Microbial analysis showed that SC06 mainly increased the alpha diversity indices in the jejunum, ileum, and cecum. SC06 treatment also significantly (P &lt; 0.05) increased the abundances of Bacteroidetes, Bacteroidales, Bacteroides, Fusobacteria, Clostridiaceae, and Veillonellaceae in the cecum and simultaneously decreased the abundances of Planococcaceae in the duodenum, Microbacteriaceae in the jejunum, and Lachnospiraceae, [Ruminococcus] and Ruminococcus in cecum. In conclusion, these results suggested that B. amyloliquefaciens instead of antibiotics showed a potential beneficial effect on the intestinal health of broilers.


2021 ◽  
Author(s):  
Seogwon Lee ◽  
Ju Yeong Kim ◽  
Myung-hee Yi ◽  
In-Yong Lee ◽  
Dongeun Yong ◽  
...  

ABSTRACTPurposeAllergens present in the feces or frass of cockroaches can cause allergic sensitization in humans. The use of fecal and frass extracts for immunotherapy has been previously investigated but has not yet been fully standardized. Here, we treated cockroaches with ampicillin to produce extracts with reduced amounts of total bacteria.MethodsWe performed targeted high-throughput sequencing of 16S rDNA to compare the microbiomes of ampicillin-treated and untreated (control) cockroaches. RNA-seq was performed to identify differentially expressed genes (DEGs) in ampicillin-treated cockroaches.ResultsAnalysis of the microbiome revealed that alpha diversity was lower in the ampicillin-treated group than in the control group. Beta diversity analysis indicated that ampicillin treatment altered bacterial composition in the microbiome of cockroaches. Quantitative polymerase chain reaction revealed that almost all bacteria were removed from ampicillin-treated cockroaches. RNA-seq analysis revealed 1,236 DEGs in ampicillin-treated cockroaches (compared to untreated cockroaches). Unlike bacterial composition, the DEGs varied between the two groups. Among major allergens, the expression of Bla g 2 decreased significantly in ampicillin-treated cockroaches (compared to untreated group).ConclusionsIn this study, the reduced level of allergens observed in cockroaches may be related to lower amounts of total bacteria caused by treatment with antibiotics. It is possible to make a protein extract with few bacteria for use in immunotherapy.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0257114
Author(s):  
Seogwon Lee ◽  
Ju Yeong Kim ◽  
Myung-Hee Yi ◽  
In-Yong Lee ◽  
Dongeun Yong ◽  
...  

Purpose Allergens present in the feces or frass of cockroaches can cause allergic sensitization in humans. The use of fecal and frass extracts for immunotherapy has been previously investigated but has not yet been fully standardized. Here, we treated cockroaches with ampicillin to produce extracts with reduced amounts of total bacteria. Methods We performed targeted high-throughput sequencing of 16S rDNA to compare the microbiomes of ampicillin-treated and untreated (control) cockroaches. RNA-seq was performed to identify differentially expressed genes (DEGs) in ampicillin-treated cockroaches. Results Analysis of the microbiome revealed that alpha diversity was lower in the ampicillin-treated group than in the control group. Beta diversity analysis indicated that ampicillin treatment altered bacterial composition in the microbiome of cockroaches. Quantitative polymerase chain reaction revealed that almost all bacteria were removed from ampicillin-treated cockroaches. RNA-seq analysis revealed 1,236 DEGs in ampicillin-treated cockroaches (compared to untreated cockroaches). Unlike bacterial composition, the DEGs varied between the two groups. Among major allergens, the expression of Bla g 2 decreased significantly in ampicillin-treated cockroaches (compared to untreated group). Conclusions In this study, the reduced level of allergens observed in cockroaches may be related to lower amounts of total bacteria caused by treatment with antibiotics. It is possible to make a protein extract with few bacteria for use in immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document