scholarly journals Inhibitor of Differentiation-2 Protein Ameliorates DSS-Induced Ulcerative Colitis by Inhibiting NF-κB Activation in Neutrophils

2021 ◽  
Vol 12 ◽  
Author(s):  
Jie Ren ◽  
Dong Yan ◽  
Yichun Wang ◽  
Jiaojiao Zhang ◽  
Min Li ◽  
...  

The loss of inhibitor of differentiation-2 (ID2) could lead to the development of colitis in mice, supplementation with exogenous ID2 protein might be a potential strategy to ameliorate colitis. In this study, the effects of ID2 protein supplementation on Dextran sodium sulfate (DSS)-induced colitis were investigated. Firstly, we confirmed that the expression of ID2 was reduced in the colon tissues of DSS-induced colitis mice and patients with ulcerative colitis (UC). Then, we constructed a recombinant plasmid containing the human Id2 gene and expressed it in Escherichia coli (E. coli) successfully. After purification and identification, purified hID2 could ameliorate DSS-induced colitis efficiently in mice by improving disease symptoms, decreasing the levels of proinflammatory cytokines in colon tissues, maintaining the integrity of intestinal barrier and reducing the infiltration of neutrophils and macrophages in the colon. Further study showed that hID2 could be endocytosed efficiently by neutrophils and macrophages, and hID2 lost its protection function against colitis when neutrophils were depleted with an anti-Gr-1 antibody. hID2 decreased the mRNA levels of IL-6, IL-1β and TNF-α in lipopolysaccharides (LPS)-stimulated neutrophils and efficiently inhibited the activation of NF-κB signalling pathway in neutrophils. Interestingly, hID2 showed a synergistic role in inhibition of NF-κB activation with pyrrolidine dithiocarbamic acid (PDTC), an inhibitor of NF-κB activation. Therefore, this study demonstrated the potential use of hID2 to treat UC, and hID2 protein might be a promising anti-inflammatory agent that targets the NF-κB signalling pathway in neutrophils.

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Bo Qian ◽  
Chengqiang Wang ◽  
Zhen Zeng ◽  
Yuan Ren ◽  
Dayu Li ◽  
...  

Ulcerative colitis is a chronic gastrointestinal disease characterized by intestinal inflammation and serious mucosal damage. As a naturally hydroxycinnamic acid, sinapic acid (SA) has antioxidant, anticancer, and neuroprotective activities. We investigated the anticolitic effect and potential mechanisms of SA in DSS-induced colitis in Kunming (KM) mice. SA treatment significantly reduced body weight loss, colon shortening, and intestinal wall thickening in colitis mice. SA treatment also significantly reduced the histological infiltration of inflammatory cells and decreased myeloperoxidase (MPO) activity in the colons of colitis mice. The administration of SA attenuated oxidative damage by enhancing the activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase and reduced the serum and colonic mRNA levels of proinflammatory cytokines in colitis mice. We used qRT-PCR and Western blotting assays and demonstrated that SA reduced the activation of the NLRP3 inflammasome and attenuated intestinal permeability by enhancing the expression of ZO-1, occludin, and claudin-1 in colitis mice. Here, we conclude that SA exhibits great anticolitic activity against DSS-induced colitis by enhancing the activity of antioxidant enzymes, reducing intestinal inflammation, and maintaining the intestinal barrier. Finally, we suggest that SA may be a safe adjuvant for the prevention of clinical colitis.


2020 ◽  
Author(s):  
Tiande Zou ◽  
Jin Yang ◽  
Xiaobo Guo ◽  
Qin He ◽  
Zirui Wang ◽  
...  

Abstract Background: Seaweed-derived polysaccharides (SDP) represent an attractive source of prebiotic nutraceuticals for the food and animal husbandry industry. However, the mechanism by which SDP from Enteromorpha mediates pig growth are not fully understood. This study aimed to investigate how SDP supplementation influences the growth performance and intestinal health in weaned pigs.Results: In Exp. 1, 240 weaned pigs were randomly assigned to four dietary treatments and fed with a basal diet or a basal diet containing 200, 400 or 800 mg/kg SDP, respectively, in a 21-d trial. Pigs on the 400 or 800 mg/kg SDP-supplemented group had greater ADG and lower F/G ratio than those on the control group (P<0.05). In Exp. 2, 20 male weaned pigs were randomly assigned to two treatments and fed with a basal diet (CON group) or a basal diet supplemented with 400 mg/kg SDP (the optimum does from Exp. 1), in a 21-d trial. Pigs fed the SDP diet had greater ADG, the concentrations of serum IL-6 and TNF-α and the activities of glutathione peroxidase, superoxide dismutase and catalase (P<0.05), and lower F/G, diarrhea rate, as well as serum D-lactate concentrations and diamine oxidase activity (P<0.05). Moreover, dietary SDP supplementation enhanced secretory immunoglobulin A content, villus height and villous height: crypt depth ratio in small intestine, as well as the lactase and maltase activities in jejunum mucosa (P<0.05). SDP supplementation elevated the mRNA levels of inflammatory response-related genes (IL-6, TNF-α, TLR4, TLR6 and MyD88), and the mRNA and protein levels of ZO-1, Claudin-1 and Occludin in jejunum mucosa (P<0.05). Importantly, SDP not only increased the Lactobacillus population but also reduced the Escherichia coli population in cecum (P<0.05). Furthermore, SDP increased acetic acid and butyric acid concentrations in cecum (P<0.05).Conclusions: These results not only suggest a beneficial effect of SDP on growth performance and intestinal barrier functions, but also offer potential mechanisms behind SDP-facilitated intestinal health in weaned pigs.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Bensheng Wu ◽  
Qing Zhou ◽  
Zongqi He ◽  
Xiaopeng Wang ◽  
Xueliang Sun ◽  
...  

Background. The flower of Abelmoschus manihot (AM) has been widely used in the treatment of chronic inflammatory diseases, including ulcerative colitis. This paper aimed to confirm the therapeutic effect of AM on ulcerative colitis (UC) and explore its mechanism. Methods. Mouse models were induced by 2.5% dextran sulfate sodium (DSS) and treated with AM. UC signs, symptoms, colon macroscopic lesion scores, and disease activity index (DAI) scores were observed. Colon levels of interleukin- (IL-) 6, IL-1β, IL-18, IL-17, tumor necrosis factor- (TNF-) α, and IL-10 were quantified by ELISA. The colon protein expression levels of NLRP3, ASC, caspase 1 p10, β-arrestin1, ZO-1, occludin-1, and claudin-1 were examined by immunohistochemistry and western blotting. The mRNA levels of IL-1β, IL-18, NLRP3, ASC, and caspase 1 p10 in the colon were determined by real-time quantitative polymerase chain reaction (qPCR). Results. After treatment with AM, the mortality of mice, pathological damage to the colon, splenomegaly, and the spleen coefficient were decreased. AM reduced the levels of proinflammatory cytokines (IL-6, IL-1β, IL-18, IL-17, and TNF-α) and increased the level of IL-10. The mRNA expression levels of NLRP3, ASC, and caspase 1 in colon tissue were decreased by AM in a dose-dependent manner. In addition, AM also reduced the protein expression of NLRP3, ASC, caspase 1 p10, IL-1β, IL-18, and β-arrestin1 in the colon tissue of model mice. Western blot analysis confirmed that AM increased the expression of occludin-1, claudin-1, and ZO-1 in a dose-dependent manner. Conclusion. This study shows that AM has a significant therapeutic effect on mice with UC, and the mechanism may be related to the inhibition of the β-arrestin1/NLRP3 inflammasome signaling pathway and the protection of intestinal barrier function.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3148
Author(s):  
Yanbei Wu ◽  
Jing Wang ◽  
Qiang He ◽  
Liangli Yu ◽  
Quynhchi Pham ◽  
...  

Enteropathogenic and enterohemorrhagic Escherichia coli are important enteric pathogens that induce hemorrhagic colitis or even fatal hemolytic uremic syndrome. Emerging evidence shows that some bio-actives derived from fruits and vegetables may serve as alternatives to antibiotics for overcoming multidrug resistant E. coli infections. In this study, the Citrobacter rodentium (Cr) infection model was utilized to mimic E. coli-induced acute intestinal inflammation, and the effects of a cruciferous vegetable-derived cancer protective compound, indole-3-carbinol (I3C), on the immune responses of Cr-susceptible C3H/HeN mice were investigated. Dietary I3C significantly inhibited the loss of body weight and the increase in spleen size in Cr infected mice. In addition, I3C treatment reduced the inflammatory response to Cr infection by maintaining anti-inflammatory cytokine IL-22 mRNA levels while reducing expression of other pro-inflammatory cytokines including IL17A, IL6, IL1β, TNF-α, and IFN-γ. Moreover, the serum cytokine levels of IL17, TNF-α, IL12p70, and G-CSF also were down-regulated by I3C in Cr-infected mice. Additionally, dietary I3C specifically enhanced the Cr-specific IgG response to Cr infection. In general, dietary I3C reduced the Cr-induced pro-inflammatory response in susceptible C3H/HeN mice and alleviated the physiological changes and tissue damage induced by Cr infection but not Cr colonization.


2020 ◽  
Author(s):  
Xue qin Zhao ◽  
Lei Wang ◽  
Chun ling Zhu ◽  
Xiao jing Xia ◽  
Shou ping Zhang ◽  
...  

Abstract Background: Escherichia coli can cause intestinal diseases in humans and livestock, destroy the intestinal barrier, exacerbate systemic inflammation, and seriously threaten human health and animal husbandry development. The antimicrobial peptide MPX is extracted from venom and possesses good antibacterial activity against gram-negative bacteria. The aim of this study was to investigate whether MPX could be effective against E. coli infection. Results: In this study, the CCK-8 and lactic dehydrogenase results showed that MPX exhibited no toxicity in IPEC-J2 cells even at a concentration of 128 µg/mL. Furthermore, MPX notably suppressed the levels of IL-2, IL-6, TNF-α, myeloperoxidase and LDH induced by E. coli and reduced inflammation by inhibiting the p-p38-, TLR4- and p-p65-dependent pathways. In addition, MPX improved the expression of ZO-1, occludin, and claudin and enhanced the wound healing ability of IPEC-J2 cells. The therapeutic effect of MPX was evaluated in a murine model, and the results showed that MPX could protect mice against lethal infection with E. coli, improve the survival rate of the mice, and reduce the colonization of E. coli in organs and feces. H&E staining showed that MPX increased the length of villi and reduced the infiltration of inflammatory cells into the jejunum, and the effect of MPX was better than that of enrofloxacin. The SEM and TEM results showed that MPX effectively ameliorated the damage caused by E. coli to the jejunum and increased the number and length of microvilli. In addition, real-time PCR revealed that MPX decreased the expression of IL-2, IL-6, and TNF-α in the jejunum and colon. Furthermore, immunohistochemistry and immunofluorescence studies revealed that MPX could reduce the expression of p-p38 and p-p65 in the jejunum, thereby reducing the secretion of inflammatory factors. Moreover, MPX increased the mRNA and protein expression of ZO-1, occludin and MUC2 in the jejunum and colon, improved the function of the intestinal barrier and promoted the absorption of nutrients. Conclusion: This study suggests that MPX may be an effective therapeutic agent against E. coli infection and other intestinal diseases, laying the foundation for the development of new drugs for bacterial infections.


2016 ◽  
Vol 83 (1) ◽  
pp. 51-57 ◽  
Author(s):  
Yu Li ◽  
Hongyan Ding ◽  
Xichun Wang ◽  
Lei Liu ◽  
Dan Huang ◽  
...  

Elevated levels of blood interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumour necrosis factor–α (TNF–α) increase insulin resistance and result in inflammation. It is not clear whether elevated blood level of acetoacetate (ACAC) and decreased blood level of glucose, which are the predominant characteristics of clinical biochemistry in ketotic dairy cows, increase proinflammatory cytokines and subsequent inflammation. The objective of this study was to test the hypothesis that ACAC and glucose activate the NF-κB signalling pathway to regulate cytokines expression in bovine hepatocytes. Bovine hepatocytes were cultured with ACAC (0–4·8 mm) and glucose (0–5·55 mm) with or without NF-κB inhibitor PDTC for 24 h. The secretion and mRNA levels of cytokines were determined by enzyme-linked immunosorbent assay (ELISA) and real-time fluorescence quantitative polymerase chain reaction (qRT-PCR). The NF-κB signalling pathway activation was evaluated by western blotting. Results showed that the secretion and expression of IL-1β, IL-6 and TNF-α increased in an ACAC dose-dependent manner. Additionally, there was an increase in the secretion and mRNA expression of these three cytokines in glucose treatment group, which increased significantly when the glucose concentrations exceed 3·33 mm. Furthermore, both ACAC and glucose upregulated NF-κB p65 protein expression and IκBα phosphorylation levels. However, these effects were reduced by PDTC. These results demonstrate that elevated levels of ACAC and glucose increase the synthesis and expression of proinflammatory factors by activating NF-κB signalling pathway in hepatocytes, which may contribute to inflammation injury in ketotic dairy cows.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Tangyou Mao ◽  
Junxiang Li ◽  
Lijuan Liu ◽  
Weihan Zhao ◽  
Yuyue Liu ◽  
...  

Ulcerative colitis (UC) is a chronic, nonspecific, inflammatory disease for which an effective treatment is lacking. Our previous study found that Qingchang Wenzhong Decoction (QCWZD) can significantly improve the clinical symptoms of UC and ameliorate dextran sulphate sodium- (DSS-) induced ulcerative colitis in rats by downregulating the IP10/CXCR3 axis–mediated inflammatory response. The purpose of the present study was to further explore the mechanism of QCWZD for UC in rats models, which were established by 7-day administration of 4.5% dextran sulphate sodium solution. QCWZD was administered daily for 7 days; then we determined the serum macrophage-stimulating protein concentration (MSP) and recepteur d’origine nantais (RON) expression and its downstream proteins (protein kinase B [Akt], phosphorylated [p] Akt, occludin, zona occluden- [ZO-] 1, and claudin-2) in colon tissue using Western blotting and quantitative polymerase chain reaction. In DSS-induced UC, QCWZD significantly alleviated colitis-associated inflammation, upregulated serum MSP expression and RON expression in the colon, reduced the pAkt levels, promoted colonic occluding and ZO-1 expression, and depressed claudin-2 expression. In conclusion, the MSP/RON signalling pathway plays an important role in the pathogenesis of UC by involving the inflammatory response and improving intestinal barrier function. QCWZD appears to attenuate DSS-induced UC in rats by upregulating the MSP/RON signalling pathway.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tiande Zou ◽  
Jin Yang ◽  
Xiaobo Guo ◽  
Qin He ◽  
Zirui Wang ◽  
...  

Abstract Background Seaweed-derived polysaccharides (SDP) represent an attractive source of prebiotic nutraceuticals for the food and animal husbandry industry. However, the mechanism by which SDP from Enteromorpha mediates pig growth are not fully understood. This study aimed to investigate how SDP supplementation influences the growth performance and intestinal health in weaned pigs. Results In Exp. 1, 240 weaned pigs were randomly assigned to four dietary treatments and fed with a basal diet or a basal diet containing 200, 400 or 800 mg/kg SDP, respectively, in a 21-day trial. Pigs on the 400 or 800 mg/kg SDP-supplemented group had greater ADG and lower F/G ratio than those on the control group (P<0.05). In Exp. 2, 20 male weaned pigs were randomly assigned to two treatments and fed with a basal diet (CON group) or a basal diet supplemented with 400 mg/kg SDP (the optimum does from Exp. 1), in a 21-day trial. Pigs fed the SDP diet had greater ADG, the concentrations of serum IL-6 and TNF-α and the activities of glutathione peroxidase, superoxide dismutase and catalase (P<0.05), and lower F/G, diarrhea rate, as well as serum D-lactate concentrations and diamine oxidase activity (P<0.05). Moreover, dietary SDP supplementation enhanced secretory immunoglobulin A content, villus height and villous height: crypt depth ratio in small intestine, as well as the lactase and maltase activities in jejunum mucosa (P<0.05). SDP supplementation elevated the mRNA levels of inflammatory response-related genes (IL-6, TNF-α, TLR4, TLR6 and MyD88), and the mRNA and protein levels of ZO-1, claudin-1 and occludin in jejunum mucosa (P<0.05). Importantly, SDP not only increased the Lactobacillus population but also reduced the Escherichia coli population in cecum (P<0.05). Furthermore, SDP increased acetic acid and butyric acid concentrations in cecum (P<0.05). Conclusions These results not only suggest a beneficial effect of SDP on growth performance and intestinal barrier functions, but also offer potential mechanisms behind SDP-facilitated intestinal health in weaned pigs.


2019 ◽  
Vol 13 (8) ◽  
pp. 1067-1080 ◽  
Author(s):  
Shanwen Chen ◽  
Shuai Zuo ◽  
Jing Zhu ◽  
Taohua Yue ◽  
Dingfang Bu ◽  
...  

Abstract Background and Aims Endogenous H2S regulates multiple physiological and pathological processes in colon epithelial tissues. The current study investigated the role of cystathionine β-synthase [CBS], a major producer of H2S in colon epithelial cells, in the pathogenesis of ulcerative colitis [UC]-related intestinal barrier injury. The expression and DNA methylation level of CBS were investigated in inflamed and non-inflamed colon tissues collected from UC patients, and the effect of decreased CBS levels on Caco-2 monolayer barrier injury and altered status of tight junctions elicited by tumour necrosis factor/interferon [TNF/IFN] was determined. Methods The expression of CBS and the methylation level of the CBS promoter were assessed in non-inflamed and inflamed colon epithelial tissue samples collected from UC patients. Barrier function, status of tight junction proteins and activation of the NF-κB p65-mediated MLCK-P-MLC signalling pathway were further investigated in Caco-2 monolayers. Results Decreased expression of CBS and elevated methylation levels of the CBS promoter were observed in inflamed sites compared with in non-inflamed sites in the colon epithelial samples from UC patients. In Caco-2 monolayers, decreased expression of CBS exacerbated TNF/IFN-induced barrier injury and altered localization of tight junction proteins. Decreased expression of CBS predisposed Caco-2 monolayers to injury elicited by TNF/IFN via augmentation of the NF-κB p65-mediated MLCK-P-MLC signalling pathway. Conclusions Decreased expression of CBS propagates the pathogenesis of UC by exacerbating inflammation-induced intestinal barrier injury. Elevated methylation of the CBS promoter might be one of the mechanisms underlying the decreased expression of CBS in inflamed sites of colon epithelial tissues from UC patients.


2020 ◽  
Vol 26 (7) ◽  
pp. 627-634 ◽  
Author(s):  
Zhang Zhu ◽  
Li Xueying ◽  
Li Chunlin ◽  
Xiong Wen ◽  
Zeng Rongrong ◽  
...  

Berberine is an alkaloid extracted from medicinal plants such as Coptis chinensis and Phellodendron chinense. It possesses anti-inflammatory, anti-tumour and anti-oxidation properties, and regulates Glc and lipid metabolism. This study explored the mechanisms of the protective effects of berberine on barrier function and inflammatory damage in porcine intestinal epithelial cells (IPEC-J2) induced by LPS. We first evaluated the effects of berberine and LPS on cell viability. IPEC-J2 cells were treated with 5 μg/ml LPS for 1 h to establish an inflammatory model, and 75, 150 and 250 μg/ml berberine were used in further experiments. The expression of IL-1β, IL-6 and TNF-α was measured by RT-PCR. The key proteins of the NF-κB/MAPK signalling pathway (IκBα, p-IκBα, p65, p-p65, c-Jun N-terminal kinase (JNK), p-JNK, p38, p-p38, ERK1/2 and p-ERK1/2) were detected by Western blot. Upon exposure to LPS, IL-1β, IL-6 and TNF-α mRNA levels and p-IκBα p-p65 protein levels were significantly enhanced. Pre-treatment with berberine reduced the expression of inflammatory factors and was positively correlated with its concentration, and dose dependently inhibited the expression of IκBα, p-IκBα, p-p65, p-p38 and JNK. These results demonstrated that pre-treating intestinal epithelial cells with berberine was useful in preventing and treating diarrhoea induced by Escherichia coli in weaned pigs.


Sign in / Sign up

Export Citation Format

Share Document