scholarly journals Regulation of the Immune System in Health and Disease by Members of the Bone Morphogenetic Protein Family

2021 ◽  
Vol 12 ◽  
Author(s):  
Tommaso Sconocchia ◽  
Giuseppe Sconocchia

Bone morphogenetic proteins (BMPs) are potent signaling molecules initially described as osteopromoting proteins. BMPs represent one of the members of the larger TGFβ family and today are recognized for their important role in numerous processes. Among the wide array of functions recently attributed to them, BMPs were also described to be involved in the regulation of components of the innate and adaptive immune response. This review focuses on the signaling pathway of BMPs and highlights the effects of BMP signaling on the differentiation, activation, and function of the main cell types of the immune system.

Science ◽  
2017 ◽  
Vol 358 (6359) ◽  
pp. 58-63 ◽  
Author(s):  
Michael J. T. Stubbington ◽  
Orit Rozenblatt-Rosen ◽  
Aviv Regev ◽  
Sarah A. Teichmann

The immune system varies in cell types, states, and locations. The complex networks, interactions, and responses of immune cells produce diverse cellular ecosystems composed of multiple cell types, accompanied by genetic diversity in antigen receptors. Within this ecosystem, innate and adaptive immune cells maintain and protect tissue function, integrity, and homeostasis upon changes in functional demands and diverse insults. Characterizing this inherent complexity requires studies at single-cell resolution. Recent advances such as massively parallel single-cell RNA sequencing and sophisticated computational methods are catalyzing a revolution in our understanding of immunology. Here we provide an overview of the state of single-cell genomics methods and an outlook on the use of single-cell techniques to decipher the adaptive and innate components of immunity.


2018 ◽  
Vol 19 (12) ◽  
pp. 3876 ◽  
Author(s):  
Vladimir Purvanov ◽  
Christoph Matti ◽  
Guerric P. B. Samson ◽  
Ilona Kindinger ◽  
Daniel F. Legler

Chemokines are essential guidance cues orchestrating cell migration in health and disease. Cognate chemokine receptors sense chemokine gradients over short distances to coordinate directional cell locomotion. The chemokines CCL19 and CCL21 are essential for recruiting CCR7-expressing dendritic cells bearing pathogen-derived antigens and lymphocytes to lymph nodes, where the two cell types meet to launch an adaptive immune response against the invading pathogen. CCR7-expressing cancer cells are also recruited by CCL19 and CCL21 to metastasize in lymphoid organs. In contrast, atypical chemokine receptors (ACKRs) do not transmit signals required for cell locomotion but scavenge chemokines. ACKR4 is crucial for internalizing and degrading CCL19 and CCL21 to establish local gradients, which are sensed by CCR7-expressing cells. Here, we describe the production of fluorescently tagged chemokines by fusing CCL19 and CCL21 to monomeric red fluorescent protein (mRFP). We show that purified CCL19-mRFP and CCL21-mRFP are versatile and powerful tools to study CCR7 and ACKR4 functions, such as receptor trafficking and chemokine scavenging, in a spatiotemporal fashion. We demonstrate that fluorescently tagged CCL19 and CCL21 permit the visualization and quantification of chemokine gradients in real time, while CCR7-expressing leukocytes and cancer cells sense the guidance cues and migrate along the chemokine gradients.


2019 ◽  
Vol 116 (49) ◽  
pp. 24719-24728 ◽  
Author(s):  
Ben R. Hopkins ◽  
Irem Sepil ◽  
Sarah Bonham ◽  
Thomas Miller ◽  
Philip D. Charles ◽  
...  

Seminal fluid proteins (SFPs) exert potent effects on male and female fitness. Rapidly evolving and molecularly diverse, they derive from multiple male secretory cells and tissues. In Drosophila melanogaster, most SFPs are produced in the accessory glands, which are composed of ∼1,000 fertility-enhancing “main cells” and ∼40 more functionally cryptic “secondary cells.” Inhibition of bone morphogenetic protein (BMP) signaling in secondary cells suppresses secretion, leading to a unique uncoupling of normal female postmating responses to the ejaculate: refractoriness stimulation is impaired, but offspring production is not. Secondary-cell secretions might therefore make highly specific contributions to the seminal proteome and ejaculate function; alternatively, they might regulate more global—but hitherto undiscovered—SFP functions and proteome composition. Here, we present data that support the latter model. We show that in addition to previously reported phenotypes, secondary-cell-specific BMP signaling inhibition compromises sperm storage and increases female sperm use efficiency. It also impacts second male sperm, tending to slow entry into storage and delay ejection. First male paternity is enhanced, which suggests a constraint on ejaculate evolution whereby high female refractoriness and sperm competitiveness are mutually exclusive. Using quantitative proteomics, we reveal changes to the seminal proteome that surprisingly encompass alterations to main-cell–derived proteins, indicating important cross-talk between classes of SFP-secreting cells. Our results demonstrate that ejaculate composition and function emerge from the integrated action of multiple secretory cell types, suggesting that modification to the cellular make-up of seminal-fluid-producing tissues is an important factor in ejaculate evolution.


2005 ◽  
Vol 25 (17) ◽  
pp. 7711-7724 ◽  
Author(s):  
Stephen E. Kendall ◽  
Chiara Battelli ◽  
Sarah Irwin ◽  
Jane G. Mitchell ◽  
Carlotta A. Glackin ◽  
...  

ABSTRACT Understanding the molecular events that govern neural progenitor lineage commitment, mitotic arrest, and differentiation into functional progeny are germane to our understanding of neocortical development. Members of the family of bone morphogenetic proteins (BMPs) play pivotal roles in regulating neural differentiation and apoptosis during neurogenesis through combined actions involving Smad and TAK1 activation. We demonstrate that BMP signaling is required for the induction of apoptosis of neural progenitors and that NRAGE is a mandatory component of the signaling cascade. NRAGE possesses the ability to bind and function with the TAK1-TAB1-XIAP complex facilitating the activation of p38. Disruption of NRAGE or any other member of the noncanonical signaling cascaded is sufficient to block p38 activation and thus the proapoptotic signals generated through BMP exposure. The function of NRAGE is independent of Smad signaling, but the introduction of a dominant-negative Smad5 also rescues neural progenitor apoptosis, suggesting that both canonical and noncanonical pathways can converge and regulate BMP-mediated apoptosis. Collectively, these results establish NRAGE as an integral component in BMP signaling and clarify its role during neural progenitor development.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 850
Author(s):  
María Ángeles Martín ◽  
Sonia Ramos

Flavanols are natural occurring polyphenols abundant in fruits and vegetables to which have been attributed to beneficial effects on health, and also against metabolic diseases, such as diabetes, obesity and metabolic syndrome. These positive properties have been associated to the modulation of different molecular pathways, and importantly, to the regulation of immunological reactions (pro-inflammatory cytokines, chemokines, adhesion molecules, nuclear factor-κB [NF-κB], inducible enzymes), and the activity of cells of the immune system. In addition, flavanols can modulate the composition and function of gut microbiome in a prebiotic-like manner, resulting in the positive regulation of metabolic pathways and immune responses, and reduction of low-grade chronic inflammation. Moreover, the biotransformation of flavanols by gut bacteria increases their bioavailability generating a number of metabolites with potential to affect human metabolism, including during metabolic diseases. However, the exact mechanisms by which flavanols act on the microbiota and immune system to influence health and disease remain unclear, especially in humans where these connections have been scarcely explored. This review seeks to summarize recent advances on the complex interaction of flavanols with gut microbiota, immunity and inflammation focus on metabolic diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ugochukwu Kelvin Ihenacho ◽  
Kelsey A. Meacham ◽  
Megan Cleland Harwig ◽  
Michael E. Widlansky ◽  
R. Blake Hill

Mitochondrial fission protein 1 (Fis1) was identified in yeast as being essential for mitochondrial division or fission and subsequently determined to mediate human mitochondrial and peroxisomal fission. Yet, its exact functions in humans, especially in regard to mitochondrial fission, remains an enigma as genetic deletion of Fis1 elongates mitochondria in some cell types, but not others. Fis1 has also been identified as an important component of apoptotic and mitophagic pathways suggesting the protein may have multiple, essential roles. This review presents current perspectives on the emerging functions of Fis1 and their implications in human health and diseases, with an emphasis on Fis1’s role in both endocrine and neurological disorders.


Development ◽  
1999 ◽  
Vol 126 (18) ◽  
pp. 4005-4015 ◽  
Author(s):  
M. Weaver ◽  
J.M. Yingling ◽  
N.R. Dunn ◽  
S. Bellusci ◽  
B.L. Hogan

In the mature mouse lung, the proximal-distal (P-D) axis is delineated by two distinct epithelial subpopulations: the proximal bronchiolar epithelium and the distal respiratory epithelium. Little is known about the signaling molecules that pattern the lung along the P-D axis. One candidate is Bone Morphogenetic Protein 4 (Bmp4), which is expressed in a dynamic pattern in the epithelial cells in the tips of growing lung buds. Previous studies in which Bmp4 was overexpressed in the lung endoderm (Bellusci, S., Henderson, R., Winnier, G., Oikawa, T. and Hogan, B. L. M. (1996) Development 122, 1693–1702) suggested that this factor plays an important role in lung morphogenesis. To further investigate this question, two complementary approaches were utilized to inhibit Bmp signaling in vivo. The Bmp antagonist Xnoggin and, independently, a dominant negative Bmp receptor (dnAlk6), were overexpressed using the surfactant protein C (Sp-C) promoter/enhancer. Inhibiting Bmp signaling results in a severe reduction in distal epithelial cell types and a concurrent increase in proximal cell types, as indicated by morphology and expression of marker genes, including the proximally expressed hepatocyte nuclear factor/forkhead homologue 4 (Hfh4) and Clara cell marker CC10, and the distal marker Sp-C. In addition, electron microscopy demonstrates the presence of ciliated cells, a proximal cell type, in the most peripheral regions of the transgenic lungs. We propose a model in which Bmp4 is a component of an apical signaling center controlling P-D patterning. Endodermal cells at the periphery of the lung, which are exposed to high levels of Bmp4, maintain or adopt a distal character, while cells receiving little or no Bmp4 signal initiate a proximal differentiation program.


2020 ◽  
Vol 98 (11) ◽  
pp. 834-839
Author(s):  
Alice G. Vassiliou ◽  
Chrysi Keskinidou ◽  
Anastasia Kotanidou ◽  
Frantzeska Frantzeskaki ◽  
Ioanna Dimopoulou ◽  
...  

Bone morphogenetic proteins (BMPs) were once considered only to have a role in bone formation. It is now known that they have pivotal roles in other organ diseases, including heritable pulmonary arterial hypertension (PAH), where genetic mutations in the type II BMP receptor (BMPR2) are the commonest cause of receptor dysfunction. However, it has also recently been demonstrated that aquaporin 1 (Aqp1) dysfunction may contribute to PAH, highlighting that PAH development may involve more than one pathogenic pathway. Whether reduction in BMPR2 affects Aqp1 is unknown. We therefore studied Aqp1 in BMPR2-silenced human pulmonary microvascular endothelial cells (HPMECs). We demonstrated reduced Aqp1 mRNA, protein, and function in the BMPR2-silenced cells. Additionally, BMPR2-silenced cells exhibited lower expression of BMP-signaling molecules. In conclusion, decreased BMPR2 appears to affect Aqp1 at the mRNA, protein, and functional levels. This observation may identify a contributory mechanism for PAH.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Jonathan W. Lowery ◽  
Brice Brookshire ◽  
Vicki Rosen

Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the TGF-βfamily of ligands and are unequivocally involved in regulating stem cell behavior. Appropriate regulation of canonical BMP signaling is critical for the development and homeostasis of numerous human organ systems, as aberrations in the BMP pathway or its regulation are increasingly associated with diverse human pathologies. In this review, we provide a wide-perspective on strategies that increase or decrease BMP signaling. We briefly outline the current FDA-approved approaches, highlight emerging next-generation technologies, and postulate prospective avenues for future investigation. We also detail how activating other pathways may indirectly modulate BMP signaling, with a particular emphasis on the relationship between the BMP and Activin/TGF-βpathways.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Ilse Van Brussel ◽  
Zwi N. Berneman ◽  
Nathalie Cools

Earlier investigations have revealed a surprising complexity and variety in the range of interaction between cells of the innate and adaptive immune system. Our understanding of the specialized roles of dendritic cell (DC) subsets in innate and adaptive immune responses has been significantly advanced over the years. Because of their immunoregulatory capacities and because very small numbers of activated DC are highly efficient at generating immune responses against antigens, DCs have been vigorously used in clinical trials in order to elicit or amplify immune responses against cancer and chronic infectious diseases. A better insight in DC immunobiology and function has stimulated many new ideas regarding the potential ways forward to improve DC therapy in a more fundamental way. Here, we discuss the continuous search for optimal in vitro conditions in order to generate clinical-grade DC with a potent immunogenic potential. For this, we explore the molecular and cellular mechanisms underlying adequate immune responses and focus on most favourable DC culture regimens and activation stimuli in humans. We envisage that by combining each of the features outlined in the current paper into a unified strategy, DC-based vaccines may advance to a higher level of effectiveness.


Sign in / Sign up

Export Citation Format

Share Document