scholarly journals Circadian Rhythm Modulation of Microbes During Health and Infection

2021 ◽  
Vol 12 ◽  
Author(s):  
James Alexander Pearson ◽  
Alexander Christopher Voisey ◽  
Kathrine Boest-Bjerg ◽  
F. Susan Wong ◽  
Li Wen

Circadian rhythms, referring to 24-h daily oscillations in biological and physiological processes, can significantly regulate host immunity to pathogens, as well as commensals, resulting in altered susceptibility to disease development. Furthermore, vaccination responses to microbes have also shown time-of-day-dependent changes in the magnitude of protective immune responses elicited in the host. Thus, understanding host circadian rhythm effects on both gut bacteria and viruses during infection is important to minimize adverse effects on health and identify optimal times for therapeutic administration to maximize therapeutic success. In this review, we summarize the circadian modulations of gut bacteria, viruses and their interactions, both in health and during infection. We also discuss the importance of chronotherapy (i.e., time-specific therapy) as a plausible therapeutic administration strategy to enhance beneficial therapeutic responses.

2020 ◽  
Vol 27 (11) ◽  
pp. 1068-1081
Author(s):  
Xi Liu ◽  
Dongwu Liu ◽  
Yangyang Shen ◽  
Mujie Huang ◽  
Lili Gao ◽  
...  

Matrix Metalloproteinases (MMPs) belong to a family of metal-dependent endopeptidases which contain a series of conserved pro-peptide domains and catalytic domains. MMPs have been widely found in plants, animals, and microorganisms. MMPs are involved in regulating numerous physiological processes, pathological processes, and immune responses. In addition, MMPs play a key role in disease occurrence, including tumors, cardiovascular diseases, and other diseases. Compared with invertebrate MMPs, vertebrate MMPs have diverse subtypes and complex functions. Therefore, it is difficult to study the function of MMPs in vertebrates. However, it is relatively easy to study invertebrate MMPs because there are fewer subtypes of MMPs in invertebrates. In the present review, the structure and function of MMPs in invertebrates were summarized, which will provide a theoretical basis for investigating the regulatory mechanism of MMPs in invertebrates.


2021 ◽  
pp. 1-36
Author(s):  
Rachel J. Smith ◽  
Ehsan Alipourjeddi ◽  
Cristal Garner ◽  
Amy L. Maser ◽  
Daniel W. Shrey ◽  
...  

Abstract Functional connectivity networks are valuable tools for studying development, cognition, and disease in the infant brain. In adults, such networks are modulated by the state of consciousness and the circadian rhythm; however, it is unknown if infant brain networks exhibit similar variation, given the unique temporal properties of infant sleep and circadian patterning. To address this, we analyzed functional connectivity networks calculated from long-term EEG recordings (average duration 20.8 hours) from 19 healthy infants. Networks were subjectspecific, as inter-subject correlations between weighted adjacency matrices were low. However, within individual subjects, both sleep and wake networks were stable over time, with stronger functional connectivity during sleep than wakefulness. Principal component analysis revealed the presence of two dominant networks; visual sleep scoring confirmed that these corresponded to sleep and wakefulness. Lastly, we found that network strength, degree, clustering coefficient, and path length significantly varied with time of day, when measured in either wakefulness or sleep at the group level. Together, these results suggest that modulation of healthy functional networks occurs over ~24 hours and is robust and repeatable. Accounting for such temporal periodicities may improve the physiological interpretation and use of functional connectivity analysis to investigate brain function in health and disease.


2021 ◽  
Vol 59 (1) ◽  
pp. 423-445
Author(s):  
Pradeep Kachroo ◽  
Tessa M. Burch-Smith ◽  
Murray Grant

Chloroplasts are key players in plant immune signaling, contributing to not only de novo synthesis of defensive phytohormones but also the generation of reactive oxygen and nitrogen species following activation of pattern recognition receptors or resistance (R) proteins. The local hypersensitive response (HR) elicited by R proteins is underpinned by chloroplast-generated reactive oxygen species. HR-induced lipid peroxidation generates important chloroplast-derived signaling lipids essential to the establishment of systemic immunity. As a consequence of this pivotal role in immunity, pathogens deploy effector complements that directly or indirectly target chloroplasts to attenuate chloroplast immunity (CI). Our review summarizes the current knowledge of CI signaling and highlights common pathogen chloroplast targets and virulence strategies. We address emerging insights into chloroplast retrograde signaling in immune responses and gaps in our knowledge, including the importance of understanding chloroplast heterogeneity and chloroplast involvement in intraorganellular interactions in host immunity.


Author(s):  
Russell G. Foster ◽  
Leon Kreitzman

While time of day, interacting with an individual’s chronotype, can have an important impact upon performance and health, severe disruption of the circadian system adds another level of complexity and severity. ‘When timing goes wrong’ considers the effects of flying across multiple time zones, resulting in jet lag, and shift work on human health. Sleep and circadian rhythm disruption is almost always associated with poor health. Four circadian rhythm sleep disorders have been identified: advanced sleep phase disorder, delayed sleep phase disorder, freerunning, and irregular sleep timing. Sleep and circadian rhythm disruption in mental illness and neurodegenerative disease is also discussed.


Author(s):  
Meriem Zekri ◽  
Karima Alem ◽  
Labiba Souici-Meslati

The G protein-coupled receptors (GPCRs) include one of the largest and most important families of multifunctional proteins known to molecular biology. They play a key role in cell signaling networks that regulate many physiological processes, such as vision, smell, taste, neurotransmission, secretion, immune responses, metabolism, and cell growth. These proteins are thus very important for understanding human physiology and they are involved in several diseases. Therefore, many efforts in pharmaceutical research are to understand their structures and functions, which is not an easy task, because although thousands GPCR sequences are known, many of them remain orphans. To remedy this, many methods have been developed using methods such as statistics, machine learning algorithms, and bio-inspired approaches. In this article, the authors review the approaches used to develop algorithms for classification GPCRs by trying to highlight the strengths and weaknesses of these different approaches and providing a comparison of their performances.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ryo Imai ◽  
Hiroshi Makino ◽  
Takasumi Katoh ◽  
Tetsuro Kimura ◽  
Tadayoshi Kurita ◽  
...  

Abstract Desflurane is one of the most frequently used inhalational anesthetics in clinical practice. A circadian rhythm phase-shift after general anesthesia with sevoflurane or isoflurane has been reported in mice, but few studies have reported this effect with desflurane. In the present study, we examined the rest/activity rhythm of mice by counting the number of running wheel rotations, and we found that desflurane anesthesia caused a phase shift in the circadian rhythm that was dependent on the time of day of anesthesia. We also found that desflurane anesthesia altered the relative mRNA expression of four major clock genes (Per2, Bmal, Clock, and Cry1) in the suprachiasmatic nucleus (SCN). These results are important for elucidating the effects of desflurane on the SCN, which is the master clock for the mammalian circadian rhythm. Further studies on the relationship between anesthesia and circadian rhythm may lead to the prevention and treatment of postoperative complications related to circadian rhythms.


Author(s):  
Qiuli Yang ◽  
Yuexin Wang ◽  
Anna Jia ◽  
Yufei Wang ◽  
Yujing Bi ◽  
...  

2020 ◽  
Vol 21 (6-8) ◽  
pp. 409-419
Author(s):  
Irfan Hussain ◽  
Nashaiman Pervaiz ◽  
Abbas Khan ◽  
Shoaib Saleem ◽  
Huma Shireen ◽  
...  

AbstractThe outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading fast worldwide. There is a pressing need to understand how the virus counteracts host innate immune responses. Deleterious clinical manifestations of coronaviruses have been associated with virus-induced direct dysregulation of innate immune responses occurring via viral macrodomains located within nonstructural protein-3 (Nsp3). However, no substantial information is available concerning the relationship of macrodomains to the unusually high pathogenicity of SARS-CoV-2. Here, we show that structural evolution of macrodomains may impart a critical role to the unique pathogenicity of SARS-CoV-2. Using sequence, structural, and phylogenetic analysis, we identify a specific set of historical substitutions that recapitulate the evolution of the macrodomains that counteract host immune response. These evolutionary substitutions may alter and reposition the secondary structural elements to create new intra-protein contacts and, thereby, may enhance the ability of SARS-CoV-2 to inhibit host immunity. Further, we find that the unusual virulence of this virus is potentially the consequence of Darwinian selection‐driven epistasis in protein evolution. Our findings warrant further characterization of macrodomain-specific evolutionary substitutions in in vitro and in vivo models to determine their inhibitory effects on the host immune system.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2466
Author(s):  
Benjamin Lai ◽  
Chien-Hsiang Wu ◽  
Jenn-Haung Lai

The c-Jun-N-terminal kinase (JNK) is a critical mediator involved in various physiological processes, such as immune responses, and the pathogenesis of various diseases, including autoimmune disorders. JNK is one of the crucial downstream signaling molecules of various immune triggers, mainly proinflammatory cytokines, in autoimmune arthritic conditions, mainly including rheumatoid arthritis, ankylosing spondylitis, and psoriatic arthritis. The activation of JNK is regulated in a complex manner by upstream kinases and phosphatases. Noticeably, different subtypes of JNKs behave differentially in immune responses. Furthermore, aside from biologics targeting proinflammatory cytokines, small-molecule inhibitors targeting signaling molecules such as Janus kinases can act as very powerful therapeutics in autoimmune arthritis patients unresponsiveness to conventional synthetic antirheumatic drugs. Nevertheless, despite these encouraging therapies, a population of patients with an inadequate therapeutic response to all currently available medications still remains. These findings identify the critical signaling molecule JNK as an attractive target for investigation of the immunopathogenesis of autoimmune disorders and for consideration as a potential therapeutic target for patients with autoimmune arthritis to achieve better disease control. This review provides a useful overview of the roles of JNK, how JNK is regulated in immunopathogenic responses, and the potential of therapeutically targeting JNK in patients with autoimmune arthritis.


Sign in / Sign up

Export Citation Format

Share Document