scholarly journals A Novel Hydrogen Sulfide Donor Reduces Pilocarpine-Induced Status Epilepticus and Regulates Microglial Inflammatory Profile

2021 ◽  
Vol 15 ◽  
Author(s):  
Zhongrui Liu ◽  
Ziting Zhu ◽  
Yan He ◽  
Qiyun Kang ◽  
Fei Li ◽  
...  

Although epilepsy is one of the most common neurologic disorders, there is still a lack of effective therapeutic drugs for it. Recently, we synthesized a novel hydrogen sulfide (H2S) donor, which is found to reduce seizures in animal models effectively. But it remains to be determined for its mechanism. In the present study, we found that the novel H2S donor could reduce pilocarpine-induced seizures in mice. It alleviated the epileptic behavior, the hippocampal electroencephalography (EEG) activity of seizures, and the damage of hippocampal neurons in status epilepticus mice. In addition, the novel H2S donor could reduce microglial inflammatory response. It not only reduced the upregulation of pro-inflammatory markers [inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2)] in status epilepticus mice, but also increased the levels of microglial anti-inflammatory marker arginase-1 (Arg-1). In lipopolysaccharide-treated microglia BV2 cells, administration of the H2S donor also significantly reduced the lipopolysaccharide-induced upregulation of the expression of the pro-inflammatory markers and increased the expression of the anti-inflammatory markers. Thus, the novel H2S donor regulates microglial inflammatory profile in status epilepticus mice and in vitro. These results suggested that the novel H2S donor can reduce seizures and regulate microglial inflammatory profile, which may be a novel mechanism and potential therapeutic strategy of the H2S donor anti-seizures.

2020 ◽  
Vol 28 ◽  
pp. S495-S496
Author(s):  
M. Trummer ◽  
E. Galardon ◽  
B.M. Mayer ◽  
G. Steiner ◽  
B. Kloesch

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
C. Agostinis ◽  
S. Zorzet ◽  
R. De Leo ◽  
G. Zauli ◽  
F. De Seta ◽  
...  

To evaluate the efficacy of an association of N-acetyl cystein, alpha-lipoic acid, and bromelain (NAC/LA/Br) in the treatment of endometriosis we set up a newin vivomurine model. We explored the anti-inflammatory and proapoptotic effect of this combination on human endometriotic endothelial cells (EECs) and on endothelial cells isolated from normal uterus (UtMECs). We implanted fragments of human endometriotic cysts intraperitoneally into SCID mice to evaluate the efficacy of NAC/LA/Br treatment. UtMECs and EECs, untreated or treated with NAC/LA/Br, were activated with the proinflammatory stimulus TNF-αand their response in terms of VCAM1 expression was evaluated. The proapoptotic effect of higher doses of NAC/LA/Br on UtMECs and EECs was measured with a fluorogenic substrate for activated caspases 3 and 7. The preincubation of EECs with NAC/LA/Br prior to cell stimulation with TNF-αprevents the upregulation of the expression of the inflammatory “marker” VCAM1. Furthermore NAC/LA/Br were able to induce EEC, but not UtMEC, apoptosis. Finally, the novel mouse model allowed us to demonstrate that mice treated with NAC/LA/Br presented a lower number of cysts, smaller in size, compared to untreated mice. Our findings suggest that these dietary supplements may have potential therapeutic uses in the treatment of chronic inflammatory diseases like endometriosis.


2021 ◽  
Author(s):  
Nahed Abdel-Aziz ◽  
Ahmed A. Elkady ◽  
Eman M. Elgazzar

Abstract This work aims to investigate the possible effect of choline glycerophosphate alone or combined with silymarin administration in modulating whole body gamma irradiation-induced brain and intestinal injuries in rats. Rats were irradiated with 7 Gy then subjected to choline glycerophosphate and/ or silymarin for two weeks. At the end of the experiment, the animals were sacrificed and brain and intestine samples were dissected for biochemical, molecular and histopathological examinations. The results showed that choline glycerophosphate, alone or combined with silymarin, ameliorated the adverse effects of radiation as revealed by the inhibition of oxidative stress, apoptotic and inflammatory markers (MDA, Caspase 3, TNF alpha, IL-1β and NF-kB). However, TAC, anti-inflammatory marker, IL-10 and IkBa mRNA were increased. This was also accompanied by a significant increase in the Ach level, ChAT activity and α7 nAChR mRNA expression and a significant decrease in the activity of AChE as compared with the corresponding values of the irradiated group. Moreover, a reduction in the tissue lesions were observed in brain and intestinal tissues. In conclusion, choline glycerophosphate and silymarin exhibited modulating effect against detrimental effects of gamma radiation via cholinergic anti-inflammatory pathway.


Biomolecules ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1466
Author(s):  
Rajan Teena ◽  
Umapathy Dhamodharan ◽  
Daoud Ali ◽  
Kesavan Rajesh ◽  
Kunka Mohanram Ramkumar

Nuclear factor erythroid-2-related factor 2 (Nrf2) is a protein of the leucine zipper family, which mitigates inflammation and employs cytoprotective effects. Attempting to unravel the epigenetic regulation of type 2 diabetes mellitus (T2DM) and diabetic foot ulcer (DFU), we profiled the expression of eleven isoform-specific histone deacetylases (HDACs) and correlated them with NRF2 and cytokines. This study recruited a total of 60 subjects and categorized into DFU patients (n = 20), T2DM patients (n = 20), and healthy controls (n = 20). The DFU patients were subcategorized into uninfected and infected DFU (n = 10 each). We observed a progressive decline in the expression of NRF2 and its downstream targets among T2DM and DFU subjects. The inflammatory markers IL-6 and TNF-α were significantly upregulated, whereas anti-inflammatory marker IL-10 was significantly downregulated in DFU. Of note, a significant upregulation of HDAC1, 3, 4, 11, SIRT3 and downregulation of HDAC2,8, SIRT1, SIRT2, SIRT3, SIRT7 among DFU patients were observed. The significant positive correlation between NRF2 and SIRT1 in DFU patients suggested the vital role of NRF2/SIRT1 in redox homeostasis and angiogenesis. In contrast, the significant negative correlation between NRF2 and HDAC1, 3 and 4, implied an imbalance in NRF2-HDAC1, 3, 4 circuit. Furthermore, a significant positive correlation was observed between HDAC4 and IL-6, and the negative correlation between SIRT1 and IL-6 suggested the pro-inflammatory role of HDAC4 and the anti-inflammatory role of SIRT1 in NRF2 signaling. In conclusion, the epigenetic changes such as upregulation of HDAC1, 3, 4, 11, SIRT3 and downregulation of HDAC2, 8, SIRT1, SIRT2, SIRT6, SIRT7 and their association with NRF2 as well as inflammatory markers are suggestive of their roles in pathophysiology of T2DM and DFU.


Author(s):  
Ira Puspitawati ◽  
Purwanto A P ◽  
Lisyani B. Suromo

Patients with End-Stage Renal Disease (ESRD) tend to have immune imbalance triggered by uremia and Hemodialysis (HD) procedures. Contact between dialysis membrane and blood will cause bio-incompatibility reactions inducing complement activation and production of Reactive Oxygen Species (ROS) as well as proinflammatory cytokines and acute phase protein such as C-Reactive Protein (CRP). Those immune response imbalances will lead to an immunocompromised condition. The objective of this study was to prove the correlation between inflammatory markers (IL-1β, IL-6 and C-reactive proteins) and its anti-inflammatory marker (IL-10) in routine hemodialyzed patients. This is a cross-sectional observational study involving 90 subjects conducted at the Hemodialysis Installation of the Dr. Sardjito Hospital. The inclusion criteria of this study were patients who underwent routine HD procedures, aged between 18 and 65 years-old, having leukocytes count and albumin level within normal limit. The exclusion criteria of this study were patients with Acute Coronary Syndrome (ACS) and malignancies. Levels of IL-1β, IL-6  and IL-10 were measured using Enzyme-Linked Immunosorbent Assay (ELISA), while CRP was measured using highly-sensitive CRP immunoturbidimetry. Statistical analysis was performed by Spearman test. This study results showed correlations between IL-1βand IL-10 (p=0.001, r=0.302), IL-6 and IL-10 (p=0.001, r=0.418) and correlation between CRP and IL-10 (p=0.005, r=0.295). There were also correlations between IL-1β and IL-6 (p=0.029, r=0.232), IL-6 and CRP (p=0.001, r=0.534), but no correlation was found between IL- 1β and CRP (p=0.431, r=0.073). All factors that trigger the secretion of proinflammatory cytokines will trigger the release of anti-inflammatory cytokines, the consequences of anti-inflammatory cytokine secretion will happen minutes after the release of inflammatory cytokines. This study showed that there were correlations between proinflammatory and anti-inflammatory cytokines. Further studies of polymorphism-related cytokines secretion are warranted. 


Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2315 ◽  
Author(s):  
Ulrike Haß ◽  
Catrin Herpich ◽  
Kristina Norman

Accumulating data indicates a link between a pro-inflammatory status and occurrence of chronic disease-related fatigue. The questions are whether the observed inflammatory profile can be (a) improved by anti-inflammatory diets, and (b) if this improvement can in turn be translated into a significant fatigue reduction. The aim of this narrative review was to investigate the effect of anti-inflammatory nutrients, foods, and diets on inflammatory markers and fatigue in various patient populations. Next to observational and epidemiological studies, a total of 21 human trials have been evaluated in this work. Current available research is indicative, rather than evident, regarding the effectiveness of individuals’ use of single nutrients with anti-inflammatory and fatigue-reducing effects. In contrast, clinical studies demonstrate that a balanced diet with whole grains high in fibers, polyphenol-rich vegetables, and omega-3 fatty acid-rich foods might be able to improve disease-related fatigue symptoms. Nonetheless, further research is needed to clarify conflicting results in the literature and substantiate the promising results from human trials on fatigue.


2021 ◽  
Vol 22 (10) ◽  
pp. 5211
Author(s):  
Dominik Bakalarz ◽  
Edyta Korbut ◽  
Zhengnan Yuan ◽  
Bingchen Yu ◽  
Dagmara Wójcik ◽  
...  

Hydrogen sulfide (H2S) is an endogenously produced molecule with anti-inflammatory and cytoprotective properties. We aimed to investigate for the first time if a novel, esterase-sensitive H2S-prodrug, BW-HS-101 with the ability to release H2S in a controllable manner, prevents gastric mucosa against acetylsalicylic acid-induced gastropathy on microscopic and molecular levels. Wistar rats were pretreated intragastrically with vehicle, BW-HS-101 (0.5–50 μmol/kg) or its analogue without the ability to release H2S, BW-iHS-101 prior to ASA administration (125 mg/kg, intragastrically). BW-HS-101 was administered alone or in combination with nitroarginine (L-NNA, 20 mg/kg, intraperitoneally) or zinc protoporphyrin IX (10 mg/kg, intraperitoneally). Gastroprotective effects of BW-HS-101 were additionally evaluated against necrotic damage induced by intragastrical administration of 75% ethanol. Gastric mucosal damage was assessed microscopically, and gastric blood flow was determined by laser flowmetry. Gastric mucosal DNA oxidation and PGE2 concentration were assessed by ELISA. Serum and/or gastric protein concentrations of IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-13, VEGF, GM-CSF, IFN-γ, TNF-α, and EGF were determined by a microbeads/fluorescent-based multiplex assay. Changes in gastric mucosal iNOS, HMOX-1, SOCS3, IL1-R1, IL1-R2, TNF-R2, COX-1, and COX-2 mRNA were assessed by real-time PCR. BW-HS-101 or BW-iHS-101 applied at a dose of 50 μmol/kg protected gastric mucosa against ASA-induced gastric damage and prevented a decrease in the gastric blood flow level. H2S prodrug decreased DNA oxidation, systemic and gastric mucosal inflammation with accompanied upregulation of SOCS3, and EGF and HMOX-1 expression. Pharmacological inhibition of nitric oxide (NO) synthase but not carbon monoxide (CO)/heme oxygenase (HMOX) activity by L-NNA or ZnPP, respectively, reversed the gastroprotective effect of BW-HS-101. BW-HS-101 also protected against ethanol-induced gastric injury formation. We conclude that BW-HS-101, due to its ability to release H2S in a controllable manner, prevents gastric mucosa against drugs-induced gastropathy, inflammation and DNA oxidation, and upregulate gastric microcirculation. Gastroprotective effects of this H2S prodrug involves endogenous NO but not CO activity and could be mediated by cytoprotective and anti-inflammatory SOCS3 and EGF pathways.


2020 ◽  
pp. 1-14
Author(s):  
Yaser H.A. Elewa ◽  
Osamu Ichii ◽  
Teppei Nakamura ◽  
Yasuhiro Kon

Diabetes is a devastating global health problem and is considered a predisposing factor for lung injury progression. Furthermore, previous reports of the authors revealed the role of mediastinal fat-associated lymphoid clusters (MFALCs) in advancing respiratory diseases. However, no reports concerning the role of MFALCs on the development of lung injury in diabetes have been published. Therefore, this study aimed to examine the correlations between diabetes and the development of MFALCs and the progression of lung injury in a streptozotocin-induced diabetic mouse model. Furthermore, immunohistochemical analysis for immune cells (CD3+ T-lymphocytes, B220+ B-lymphocytes, Iba1+ macrophages, and Gr1+ granulocytes), vessels markers (CD31+ endothelial cells and LYVE-1+ lymphatic vessels “LVs”), and inflammatory markers (TNF-α and IL-5) was performed. In comparison to the control group, the diabetic group showed lung injury development with a significant increase in MFALC size, immune cells, LVs, and inflammatory marker, and a considerable decrease of CD31+ endothelial cells in both lung and MFALCs was observed. Furthermore, the blood glucose level showed significant positive correlations with MFALCs size, lung injury, immune cells, inflammatory markers, and LYVE-1+ LVs in lungs and MFALCs. Thus, we suggest that the development of MFALCs and LVs could contribute to lung injury progression in diabetic conditions.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 323
Author(s):  
Subrat Kumar Bhattamisra ◽  
Hui Min Koh ◽  
Shin Yean Lim ◽  
Hira Choudhury ◽  
Manisha Pandey

Catalpol isolated from Rehmannia glutinosa is a potent antioxidant and investigated against many disorders. This review appraises the key molecular pathways of catalpol against diabetes mellitus and its complications. Multiple search engines including Google Scholar, PubMed, and Science Direct were used to retrieve publications containing the keywords “Catalpol”, “Type 1 diabetes mellitus”, “Type 2 diabetes mellitus”, and “diabetic complications”. Catalpol promotes IRS-1/PI3K/AKT/GLUT2 activity and suppresses Phosphoenolpyruvate carboxykinase (PEPCK) and Glucose 6-phosphatase (G6Pase) expression in the liver. Catalpol induces myogenesis by increasing MyoD/MyoG/MHC expression and improves mitochondria function through the AMPK/PGC-1α/PPAR-γ and TFAM signaling in skeletal muscles. Catalpol downregulates the pro-inflammatory markers and upregulates the anti-inflammatory markers in adipose tissues. Catalpol exerts antioxidant properties through increasing superoxide dismutase (sod), catalase (cat), and glutathione peroxidase (gsh-px) activity in the pancreas and liver. Catalpol has been shown to have anti-oxidative, anti-inflammatory, anti-apoptosis, and anti-fibrosis properties that in turn bring beneficial effects in diabetic complications. Its nephroprotective effect is related to the modulation of the AGE/RAGE/NF-κB and TGF-β/smad2/3 pathways. Catalpol produces a neuroprotective effect by increasing the expression of protein Kinase-C (PKC) and Cav-1. Furthermore, catalpol exhibits a cardioprotective effect through the apelin/APJ and ROS/NF-κB/Neat1 pathway. Catalpol stimulates proliferation and differentiation of osteoblast cells in high glucose condition. Lastly, catalpol shows its potential in preventing neurodegeneration in the retina with NF-κB downregulation. Overall, catalpol exhibits numerous beneficial effects on diabetes mellitus and diabetic complications.


Biomedicines ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 361
Author(s):  
Margaux Sambon ◽  
Anna Gorlova ◽  
Alice Demelenne ◽  
Judit Alhama-Riba ◽  
Bernard Coumans ◽  
...  

Thiamine precursors, the most studied being benfotiamine (BFT), have protective effects in mouse models of neurodegenerative diseases. BFT decreased oxidative stress and inflammation, two major characteristics of neurodegenerative diseases, in a neuroblastoma cell line (Neuro2a) and an immortalized brain microglial cell line (BV2). Here, we tested the potential antioxidant and anti-inflammatory effects of the hitherto unexplored derivative O,S-dibenzoylthiamine (DBT) in these two cell lines. We show that DBT protects Neuro2a cells against paraquat (PQ) toxicity by counteracting oxidative stress at low concentrations and increases the synthesis of reduced glutathione and NADPH in a Nrf2-independent manner. In BV2 cells activated by lipopolysaccharides (LPS), DBT significantly decreased inflammation by suppressing translocation of NF-κB to the nucleus. Our results also demonstrate the superiority of DBT over thiamine and other thiamine precursors, including BFT, in all of the in vitro models. Finally, we show that the chronic administration of DBT arrested motor dysfunction in FUS transgenic mice, a model of amyotrophic lateral sclerosis, and it reduced depressive-like behavior in a mouse model of ultrasound-induced stress in which it normalized oxidative stress marker levels in the brain. Together, our data suggest that DBT may have therapeutic potential for brain pathology associated with oxidative stress and inflammation by novel, coenzyme-independent mechanisms.


Sign in / Sign up

Export Citation Format

Share Document