scholarly journals Dietary Amylose/Amylopectin Ratio Modulates Cecal Microbiota and Metabolites in Weaned Goats

2021 ◽  
Vol 8 ◽  
Author(s):  
Kefyalew Gebeyew ◽  
Kai Chen ◽  
Teketay Wassie ◽  
Md. Abul Kalam Azad ◽  
Jianhua He ◽  
...  

Increasing the ratio of amylose in the diet can increase the quantity of starch that flows to the large intestine for microbial fermentation. This leads to the alteration of microbiota and metabolite of the hindgut, where the underlying mechanism is not clearly understood. The present study used a combination of 16S amplicon sequencing technology and metabolomics technique to reveal the effects of increasing ratios of amylose/amylopectin on cecal mucosa- and digesta-associated microbiota and their metabolites in young goats. Twenty-seven Xiangdong black female goats with average body weights (9.00 ± 1.12 kg) were used in this study. The goats were randomly allocated to one of the three diets containing starch with 0% amylose corn (T1), 50% high amylose corn (T2), and 100% high amylose corn (T3) for 35 days. Results showed that cecal valerate concentration was higher (P < 0.05) in the T2 group than those in the T1 and T3 groups. The levels of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 were decreased (P < 0.05) in cecal tissue while IL-10 was increased (P < 0.05) in the T2 group when compared with T1 or T3 groups. At the phylum level, the proportion of mucosa-associated Spirochaetes was increased (P < 0.05), while Proteobacteria was deceased by feeding high amylose ratios (P < 0.05). The abundance of Verrucomicrobia was decreased (P < 0.05) in the T3 group compared with the T1 and T2 groups. The abundance of digesta-associated Firmicutes was increased (P < 0.05) while Verrucomicrobia and Tenericutes were deceased (P < 0.05) with the increment of amylose/amylopectin ratios. The LEfSe analysis showed that a diet with 50% high amylose enriched the abundance of beneficial bacteria such as Faecalibacterium and Lactobacillus in the digesta and Akkermansia in the mucosa compared with the T1 diet. The metabolomics results revealed that feeding a diet containing 50% high amylose decreased the concentration of fatty acyls-related metabolites, including dodecanedioic acid, heptadecanoic acid, and stearidonic acid ethyl ester compared with the T1 diet. The results suggested that a diet consisting of 50% high amylose could maintain a better cecal microbiota composition and host immune function.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tzipi Braun ◽  
Shiraz Halevi ◽  
Rotem Hadar ◽  
Gilate Efroni ◽  
Efrat Glick Saar ◽  
...  

AbstractThe coronavirus disease 2019 (COVID-19) has rapidly spread around the world, impacting the lives of many individuals. Growing evidence suggests that the nasopharyngeal and respiratory tract microbiome are influenced by various health and disease conditions, including the presence and the severity of different viral disease. To evaluate the potential interactions between Severe Acute Respiratory Syndrome Corona 2 (SARS-CoV-2) and the nasopharyngeal microbiome. Microbial composition of nasopharyngeal swab samples submitted to the clinical microbiology lab for suspected SARS-CoV-2 infections was assessed using 16S amplicon sequencing. The study included a total of 55 nasopharyngeal samples from 33 subjects, with longitudinal sampling available for 12 out of the 33 subjects. 21 of the 33 subjects had at least one positive COVID-19 PCR results as determined by the clinical microbiology lab. Inter-personal variation was the strongest factor explaining > 75% of the microbial variation, irrespective of the SARS-CoV-2 status. No significant effect of SARS-CoV-2 on the nasopharyngeal microbial community was observed using multiple analysis methods. These results indicate that unlike some other viruses, for which an effect on the microbial composition was noted, SARS-CoV-2 does not have a strong effect on the nasopharynx microbial habitants.


2020 ◽  
Vol 15 (1) ◽  
pp. 544-552
Author(s):  
Xiaoyan Deng ◽  
Zhixing Lin ◽  
Chao Zuo ◽  
Yanjie Fu

AbstractCirculating miR-150-5p has been identified as a prognostic marker in patients with critical illness and sepsis. Herein, we aimed to further explore the role and underlying mechanism of miR-150-5p in sepsis. Quantitative real-time-PCR assay was performed to detect the expression of miR-150-5p upon stimulation with lipopolysaccharide (LPS) in RAW264.7 cells. The levels of tumor necrosis factor-α, interleukin (IL)-6 and IL-1β were measured by ELISA assay. Cell apoptosis was determined using flow cytometry. Western blot was used to assess notch receptor 1 (Notch1) expression in LPS-induced RAW264.7 cells. Dual-luciferase reporter assay was employed to validate the target of miR-150-5p. Our data showed that miR-150-5p was downregulated and Notch1 was upregulated in LPS-stimulated RAW264.7 cells. miR-150-5p overexpression or Notch1 silencing alleviated LPS-induced inflammatory response and apoptosis in RAW264.7 cells. Moreover, Notch1 was a direct target of miR-150-5p. Notch1 abated miR-150-5p-mediated anti-inflammation and anti-apoptosis in LPS-induced RAW264.7 cells. miR-150-5p alleviated LPS-induced inflammatory response and apoptosis at least partly by targeting Notch1 in RAW264.7 cells, highlighting miR-150-5p as a target in the development of anti-inflammation and anti-apoptosis drugs for sepsis treatment.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Gongchao Jing ◽  
Yufeng Zhang ◽  
Wenzhi Cui ◽  
Lu Liu ◽  
Jian Xu ◽  
...  

Abstract Background Due to their much lower costs in experiment and computation than metagenomic whole-genome sequencing (WGS), 16S rRNA gene amplicons have been widely used for predicting the functional profiles of microbiome, via software tools such as PICRUSt 2. However, due to the potential PCR bias and gene profile variation among phylogenetically related genomes, functional profiles predicted from 16S amplicons may deviate from WGS-derived ones, resulting in misleading results. Results Here we present Meta-Apo, which greatly reduces or even eliminates such deviation, thus deduces much more consistent diversity patterns between the two approaches. Tests of Meta-Apo on > 5000 16S-rRNA amplicon human microbiome samples from 4 body sites showed the deviation between the two strategies is significantly reduced by using only 15 WGS-amplicon training sample pairs. Moreover, Meta-Apo enables cross-platform functional comparison between WGS and amplicon samples, thus greatly improve 16S-based microbiome diagnosis, e.g. accuracy of gingivitis diagnosis via 16S-derived functional profiles was elevated from 65 to 95% by WGS-based classification. Therefore, with the low cost of 16S-amplicon sequencing, Meta-Apo can produce a reliable, high-resolution view of microbiome function equivalent to that offered by shotgun WGS. Conclusions This suggests that large-scale, function-oriented microbiome sequencing projects can probably benefit from the lower cost of 16S-amplicon strategy, without sacrificing the precision in functional reconstruction that otherwise requires WGS. An optimized C++ implementation of Meta-Apo is available on GitHub (https://github.com/qibebt-bioinfo/meta-apo) under a GNU GPL license. It takes the functional profiles of a few paired WGS:16S-amplicon samples as training, and outputs the calibrated functional profiles for the much larger number of 16S-amplicon samples.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hannah J. MacLeod ◽  
George Dimopoulos ◽  
Sarah M. Short

The midgut microbiota of the yellow fever mosquito Aedes aegypti impacts pathogen susceptibility and transmission by this important vector species. However, factors influencing the composition and size of the microbiome in mosquitoes are poorly understood. We investigated the impact of larval diet abundance during development on the composition and size of the larval and adult microbiota by rearing Aedes aegypti under four larval food regimens, ranging from nutrient deprivation to nutrient excess. We assessed the persistent impacts of larval diet availability on the microbiota of the larval breeding water, larval mosquitoes, and adult mosquitoes under sugar and blood fed conditions using qPCR and high-throughput 16S amplicon sequencing to determine bacterial load and microbiota composition. Bacterial loads in breeding water increased with increasing larval diet. Larvae reared with the lowest diet abundance had significantly fewer bacteria than larvae from two higher diet treatments, but not from the highest diet abundance. Adults from the lowest diet abundance treatment had significantly fewer bacteria in their midguts compared to all higher diet abundance treatments. Larval diet amount also had a significant impact on microbiota composition, primarily within larval breeding water and larvae. Increasing diet correlated with increased relative levels of Enterobacteriaceae and Flavobacteriaceae and decreased relative levels of Sphingomonadaceae. Multiple individual OTUs were significantly impacted by diet including one mapping to the genus Cedecea, which increased with higher diet amounts. This was consistent across all sample types, including sugar fed and blood fed adults. Taken together, these data suggest that availability of diet during development can cause lasting shifts in the size and composition of the microbiota in the disease vector Aedes aegypti.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0241529
Author(s):  
Anita Silver ◽  
Sean Perez ◽  
Melanie Gee ◽  
Bethany Xu ◽  
Shreeya Garg ◽  
...  

Host-associated microbiomes can play important roles in the ecology and evolution of their insect hosts, but bacterial diversity in many insect groups remains poorly understood. Here we examine the relationship between host environment, host traits, and microbial diversity in three species in the ground beetle family (Coleoptera: Carabidae), a group of roughly 40,000 species that synthesize a wide diversity of defensive compounds. This study used 16S amplicon sequencing to profile three species that are phylogenetically distantly related, trophically distinct, and whose defensive chemical secretions differ: Anisodactylus similis LeConte, 1851, Pterostichus serripes (LeConte, 1875), and Brachinus elongatulus Chaudoir, 1876. Wild-caught beetles were compared to individuals maintained in the lab for two weeks on carnivorous, herbivorous, or starvation diets (n = 3 beetles for each species-diet combination). Metagenomic samples from two highly active tissue types—guts, and pygidial gland secretory cells (which produce defensive compounds)—were processed and sequenced separately from those of the remaining body. Bacterial composition and diversity of these ground beetles were largely resilient to controlled changes to host diet. Different tissues within the same beetle harbor unique microbial communities, and secretory cells in particular were remarkably similar across species. We also found that these three carabid species have patterns of microbial diversity similar to those previously found in carabid beetles. These results provide a baseline for future studies of the role of microbes in the diversification of carabids.


2021 ◽  
Author(s):  
Alev Kural ◽  
Imran Khan ◽  
Hakan Seyit ◽  
Tuba R Caglar ◽  
Pınar Toklu ◽  
...  

Aims: Permanent treatment of morbid obesity with medication or diet is nearly impossible. Laparoscopic sleeve gastrectomy (LSG) is becoming a widely accepted treatment option. This study profiled and compared gut microbiota composition before and after LSG. Methods & results: A total of 54 stool samples were collected from 27 morbidly obese individuals before and after LSG. The gut microbiota was profiled with 16S amplicon sequencing. After LSG, patients demonstrated a significant decrease (p < 0.001) in BMI and an increase in bacterial diversity. An increased Firmicutes/Bacteroidetes ratio was also noticed after LSG. The families Prevotellaceae and Veillonellaceae predominated in preoperative samples but were markedly lowered after LSG. A marked increase in Akkermansia, Alistipes, Streptococcus, Ruminococcus and Parabacteroides was observed after LSG. Conclusion: In addition to lowering BMI, LSG remodeled gut microbiota composition.


Vascular ◽  
2019 ◽  
Vol 28 (3) ◽  
pp. 314-320
Author(s):  
Weiping Ci ◽  
Tian Wang ◽  
Taotao Li ◽  
Jin Wan

Objectives The effect and underlying mechanism of T-614 (iguratimod) on Takayasu’s arteritis (TA) are unknown. Here, we report the effects of T-614 on cell proliferation and interleukin-8 (IL-8) production in human aortic adventitial fibroblasts (HAAFs) in vitro and explore its initial benefit in terms of vascular wall inflammation and remodeling for patients with TA. Methods HAAFs were cultured with 0, 5, 50, 100, or 250 μg/ml T-614 in the absence or presence of tumor necrosis factor-α (TNF-α) in vitro. Cell viability was determined by a modified MTT assay. Supernatant IL-8 levels were measured by enzyme-linked immunosorbent assays. Results In the presence of TNF-α, compared to that in the control group, cell viability of HAAFs significantly decreased in the 50, 100, and 250 μg/ml T-614 treatment groups (OD value: P <  0.01, P <  0.001, P <  0.001, respectively; survival fraction (SF): P <  0.05, P <  0.001, P <  0.001, respectively). However, there was no significant difference in cell viability between TNF-α-stimulated and unstimulated groups at the same concentration of T-614. In the absence or presence of TNF-α, T-614 suppressed HAAF cell viability dose-dependently (OD value: r = −0.915, P =  0.000; r = −0.926, P =  0.000, respectively; SF: r = −0.897, P =  0.000; r = −0.885, P =  0.000, respectively). Compared to that in the control group, in the absence of TNF-α, IL-8 levels in the 5 and 100 μg/ml T-614-treated groups were significantly higher ( P <  0.05); in the presence of TNF-α, IL-8 levels in the 5, 50, and 100 μg/ml T-614-treated groups were significantly higher ( P <  0.001, P <  0.001, P <  0.01, respectively). Further, there was a negative correlation between supernatant IL-8 levels and T-614 concentration in groups stimulated with TNF-α ( r = −0.670, P =  0.000), but there was no significant correlation between these parameters in groups that were not stimulated with TNF-α. Conclusions In the absence or presence of TNF-α, T-614 can inhibit HAAF proliferation and promote IL-8 production in vitro; therefore, it could be used to prevent adventitial thickening of the aorta and improve vascular remodeling in inflammatory environments in vitro and might provide a new immunotherapeutic intervention for TA.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4796
Author(s):  
Jiali Chen ◽  
Cailin Tang ◽  
Yang Zhou ◽  
Rongfei Zhang ◽  
Shaoxia Ye ◽  
...  

Cinnamomum camphora (Linn.) Presl has been widely used in traditional Chinese medicine for a variety of purposes. Our previous study indicated the antibacterial mechanism of the essential oil (EO) from C. camphora leaves; however, its anti-inflammatory activity and the underlying mechanism have not been clearly demonstrated. Thus, the present study investigated its anti-inflammatory property. Our data revealed that EO significantly decreased the release of nitric oxide (NO) and the mRNA expression of inducible NO synthase (iNOS) in lipopolysaccharide (LPS)-induced BV2 microglial cells. EO also attenuated LPS-induced increase in the mRNA expression and secretion of inflammatory cytokines including interleukin-6 (IL-6), IL-18, IL-1β and tumor necrosis factor-α (TNF-α). Furthermore, the metabolic profiles of LPS-induced BV2 microglial cells treated with or without EO were explored. Thirty-nine metabolites were identified with significantly different contents, including 21 upregulated and 18 downregulated ones. Five pathways were enriched by shared differential metabolites. Compared with the control cells, the glucose level was decreased, while the lactate level was increased, in the culture supernatant from LPS-stimulated cells, which were reversed by EO treatment. Moreover, compared to the LPS-treated group, the activities of phosphofructokinase (PFK) and pyruvate kinase (PK) in EO group were decreased. In summary, the current study demonstrated that EO from C. camphora leaves acts as an anti-inflammatory agent, which might be mediated through attenuating the glycolysis capacity of microglial cells.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Michele Pittol ◽  
Erin Scully ◽  
Daniel Miller ◽  
Lisa Durso ◽  
Lidia Mariana Fiuza ◽  
...  

In agricultural systems, interactions between plants and microorganisms are important to maintaining production and profitability. In this study, bacterial communities in floodwaters of rice fields were monitored during the vegetative and reproductive stages of rice plant development using 16S amplicon sequencing. The study was conducted in the south of Brazil, during the crop years 2011/12 and 2012/13. Comparative analyses showed strong differences between the communities of floodwaters associated with the two developmental stages. During the vegetative stage, 1551 operational taxonomic units (OTUs) were detected, while less than half that number (603) were identified in the reproductive stage. The higher bacterial richness observed in floodwater collected during the vegetative stage may have been favored by the higher concentration of nutrients, such as potassium, due to rhizodeposition and fertilizer application. Eighteen bacterial phyla were identified in both samples. Both communities were dominated by Gammaproteobacteria. In the vegetative stage, Alphaproteobacteria and Betaproteobacteria were more abundant and, in contrast, Bacilli and Clostridia were the more dominant classes in the reproductive stage. The major bacterial taxa identified have been previously identified as important colonizers of rice fields. The richness and composition of bacterial communities over cultivation time may contribute to the sustainability of the crop.


Sign in / Sign up

Export Citation Format

Share Document