scholarly journals Ketone Supplementation: Meeting the Needs of the Brain in an Energy Crisis

2021 ◽  
Vol 8 ◽  
Author(s):  
Angela M. Poff ◽  
Sara Moss ◽  
Maricel Soliven ◽  
Dominic P. D'Agostino

Diverse neurological disorders are associated with a deficit in brain energy metabolism, often characterized by acute or chronic glucose hypometabolism. Ketones serve as the brain's only significant alternative fuel and can even become the primary fuel in conditions of limited glucose availability. Thus, dietary supplementation with exogenous ketones represents a promising novel therapeutic strategy to help meet the energetic needs of the brain in an energy crisis. Preliminary evidence suggests ketosis induced by exogenous ketones may attenuate damage or improve cognitive and motor performance in neurological conditions such as seizure disorders, mild cognitive impairment, Alzheimer's disease, and neurotrauma.

Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 286 ◽  
Author(s):  
Marina Warepam ◽  
Khurshid Ahmad ◽  
Safikur Rahman ◽  
Hamidur Rahaman ◽  
Kritika Kumari ◽  
...  

Most of the human diseases related to various proteopathies are confined to the brain, which leads to the development of various forms of neurological disorders. The human brain consists of several osmolytic compounds, such as N-Acetylaspartate (NAA), myo-inositol (mI), glutamate (Glu), glutamine (Gln), creatine (Cr), and choline-containing compounds (Cho). Among these osmolytes, the level of NAA drastically decreases under neurological conditions, and, hence, NAA is considered to be one of the most widely accepted neuronal biomarkers in several human brain disorders. To date, no data are available regarding the effect of NAA on protein stability, and, therefore, the possible effect of NAA under proteopathic conditions has not been fully uncovered. To gain an insight into the effect of NAA on protein stability, thermal denaturation and structural measurements were carried out using two model proteins at different pH values. The results indicate that NAA increases the protein stability with an enhancement of structure formation. We also observed that the stabilizing ability of NAA decreases in a pH-dependent manner. Our study indicates that NAA is an efficient protein stabilizer at a physiological pH.


2021 ◽  
Vol 19 ◽  
Author(s):  
Gaigai Li ◽  
Prativa Sherchan ◽  
Zhouping Tang ◽  
Jiping Tang

: Autophagy and phagocytosis are two important endogenous lysosomal dependent clearing systems in the organism. In some neurological disorders, excessive autophagy or dysfunctional phagocytosis have been shown to contribute to brain injury. Recent studies have revealed that there are underlying interactions between these two processes. However, different studies show inconsistent results for the contribution of autophagy to the phagocytic process in diverse phagocytes and relatively little is known about the link between them especially in the brain. It is critical to understand the role that autophagy plays in phagocytic process in order to promote clearance of endogenous and exogenous detrimental materials. In this review, we highlight studies that focused on phagocytosis and autophagy occurring in the brain and summarized the possible regulatory roles of autophagy in the process of phagocytosis. Balancing the roles of autophagy and phagocytosis may be a promising therapeutic strategy for the treatment of some neurological diseases in the future.


Author(s):  
Maria Flynn ◽  
Dave Mercer

The nervous system’s central role in all human functions means that neurological disorders often directly impact on other body systems, so the management of neurological conditions is a complex and specialized area of nursing practice. People with neurological disorders will normally be cared for by specialist clinical teams working in neurological or neurosurgical units or spinal centres. However, general adult nurses will come into contact with people who have a collection of symptoms suggesting a neurological disorder, and they are highly likely to encounter people who are living with dementia. It is therefore important that general adult nurses can recognize neurological changes and communicate effectively with people who have disorders of the brain or nervous system. This chapter outlines key facts about neurological conditions which are likely to be useful to the general nurse. These include an overview of conditions, clinical examinations, and key nursing considerations. A summary of frequently prescribed medicines is also presented.


2020 ◽  
Vol 9 (7) ◽  
pp. 2259 ◽  
Author(s):  
Elena Kosenko ◽  
Lyudmila Tikhonova ◽  
Gubidat Alilova ◽  
Carmina Montoliu

Background: The relationship between liver disease and neuropathology in hepatic encephalopathy is well known, but the genesis of encephalopathy in liver failure is yet to be elucidated. Conceptually, the main cause of hepatic encephalopathy is the accumulation of brain ammonia due to impaired liver detoxification function or occurrence of portosystemic shunt. Yet, as well as taking up toxic ammonia, the liver also produces vital metabolites that ensure normal cerebral function. Given this, for insight into how perturbations in the metabolic capacity of the liver may be related to brain pathology, it is crucial to understand the extent of ammonia-related changes in the hepatic metabolism that provides respiratory fuel for the brain, a deficiency of which can give rise to encephalopathy. Methods: Hepatic encephalopathy was induced in starved rats by injection of ammonium acetate. Ammonia-induced toxicity was evaluated by plasma and freeze-clamped liver and brain energy metabolites, and mitochondrial, cytoplasmic, and microsomal gluconeogenic enzymes, including mitochondrial ketogenic enzymes. Parameters of oxidative phosphorylation were recorded polarographically with a Clark-type electrode, while other measures were determined with standard fluorometric enzymatic methods. Results: Progressive impairment of liver mitochondrial respiration in the initial stage of ammonia-induced hepatotoxicity and the subsequent energy crisis due to decreased ATP synthesis lead to cessation of gluconeogenesis and ketogenesis. Reduction in glucose and ketone body supply to the brain is a terminal event in liver toxicity, preceding the development of coma. Conclusions: Our study provides a framework to further explore the relationship between hepatic dysfunction and progression of brain energy crisis in hepatic encephalopathy.


2015 ◽  
Vol 02 (03) ◽  
pp. 240-245
Author(s):  
Sriganesh Kamath ◽  
G Umamaheswara Rao

AbstractRecent advances in functional imaging of the brain have enabled a better understanding of the brain functions in health and disease. Amongst various functional imaging techniques, functional magnetic resonance imaging (fMRI) has been more rigorously employed in both clinical practice and in the research arena. This review will discuss the principles and techniques of fMRI, its role in understanding the pathophysiology of brain injury and finally, its clinical application in diagnosing neurological conditions and prognostication of outcome in patients with neurological disorders.


Author(s):  
Peter R. Breggin

BACKGROUND: The vaccine/autism controversy has caused vast scientific and public confusion, and it has set back research and education into genuine vaccine-induced neurological disorders. The great strawman of autism has been so emphasized by the vaccine industry that it, and it alone, often appears in authoritative discussions of adverse effects of the MMR and other vaccines. By dismissing the chimerical vaccine/autism controversy, vaccine defenders often dismiss all genuinely neurological aftereffects of the MMR (measles, mumps, and rubella) and other vaccines, including well-documented events, such as relatively rare cases of encephalopathy and encephalitis. OBJECTIVE: This report explains that autism is not a physical or neurological disorder. It is not caused by injury or disease of the brain. It is a developmental disorder that has no physical origins and no physical symptoms. It is extremely unlikely that vaccines are causing autism; but it is extremely likely that they are causing more neurological damage than currently appreciated, some of it resulting in psychosocial disabilities that can be confused with autism and other psychosocial disorders. This confusion between a developmental, psychosocial disorder and a physical neurological disease has played into the hands of interest groups who want to deny that vaccines have any neurological and associated neuropsychiatric effects. METHODS: A review of the scientific literature, textbooks, and related media commentary is integrated with basic clinical knowledge. RESULTS: This report shows how scientific sources have used the vaccine/autism controversy to avoid dealing with genuine neurological risks associated with vaccines and summarizes evidence that vaccines, including the MMR, can cause serious neurological disorders. Manufacturers have been allowed by the US Food and Drug Administration (FDA) to gain vaccine approval without placebo-controlled clinical trials. CONCLUSIONS: The misleading vaccine autism controversy must be set aside in favor of examining actual neurological harms associated with vaccines, including building on existing research that has been ignored. Manufacturers of vaccines must be required to conduct placebo-controlled clinical studies for existing vaccines and for government approval of new vaccines. Many probable or confirmed neurological adverse events occur within a few days or weeks after immunization and could be detected if the trials were sufficiently large. Contrary to current opinion, large, long-term placebo-controlled trials of existing and new vaccines would be relatively easy and safe to conduct.


2020 ◽  
Vol 20 (3) ◽  
pp. 174-183
Author(s):  
Bushra Nabi ◽  
Saleha Rehman ◽  
Faheem Hyder Pottoo ◽  
Sanjula Baboota ◽  
Javed Ali

: NeuroAIDS, a disease incorporating both infectious and neurodegenerative pathways, is still a formidable challenge for the researchers to deal with. The primary concern for the treatment of neuroAIDS still remains the inaccessibility of the viral reservoir, making it indispensable for novel techniques to be continuously innovated. Since the brain serves as a reservoir for viral replication, it is pragmatic and a prerequisite to overcome the related barriers in order to improve the drug delivery to the brain. The current treatment ideology is based on the combinatorial approach of a mocktail of antiretroviral drugs. However, complete eradication of the disease could not be achieved. Thereby the arena of gene-based cellular delivery is trending and has created a niche for itself in the present scenario. To establish the supremacy of gene delivery, it is advisable to have a better understanding of the molecular mechanism involved in the due process. The mechanism associated with the activity of the anti-HIV gene lies in their intrinsic property to impart resistance to the HIV infection by targeting the viral entry channels. This review principally emphasizes on different types of gene therapies explored so far for the management of AIDS and its associated neurological conditions. Therefore it could rightly be said that we are at the crossroad where the need of the hour is to develop novel strategies for curbing AIDS and its associated neurological conditions.


2020 ◽  
Vol 45 (2) ◽  
Author(s):  
Arpita Chakraborty ◽  
Samir Kumar Praharaj ◽  
R. V. Krishnananda Prabhu ◽  
M. Mukhyaprana Prabhu

AbstractBackgroundMore than half portion of the brain is formed by lipids. They play critical roles in maintaining the brain's structural and functional components. Any dysregulation in these brain lipids can lead to cognitive dysfunction which are associated with neurological disorders such as Alzheimer's disease, Parkinson's disease, schizophrenia, vascular dementia etc. Studies have linked lipids with cognitive impairment. But not much has been studied about the complex brain lipids which might play a pivotal role in cognitive impairment. This review aims to highlight the lipidomic profiles in patients with cognitive dysfunction.ResultsForty-five articles were reviewed. These studies show alterations in complex lipids such as sphingolipids, phospholipids, glycolipids and sterols in brain in various neurological disorders such as vascular dementia, Parkinson's and Alzheimer's disease. However, the classes of fatty acids in these lipids involved are different across studies.ConclusionsThere is a need for targeted lipidomics analysis, specifically including sphingolipids in patients with neurodegenerative disorders so as to improve diagnostics as well as management of these disorders.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 566
Author(s):  
Jae-Geun Lee ◽  
Hyun-Ju Cho ◽  
Yun-Mi Jeong ◽  
Jeong-Soo Lee

The microbiota–gut–brain axis (MGBA) is a bidirectional signaling pathway mediating the interaction of the microbiota, the intestine, and the central nervous system. While the MGBA plays a pivotal role in normal development and physiology of the nervous and gastrointestinal system of the host, its dysfunction has been strongly implicated in neurological disorders, where intestinal dysbiosis and derived metabolites cause barrier permeability defects and elicit local inflammation of the gastrointestinal tract, concomitant with increased pro-inflammatory cytokines, mobilization and infiltration of immune cells into the brain, and the dysregulated activation of the vagus nerve, culminating in neuroinflammation and neuronal dysfunction of the brain and behavioral abnormalities. In this topical review, we summarize recent findings in human and animal models regarding the roles of the MGBA in physiological and neuropathological conditions, and discuss the molecular, genetic, and neurobehavioral characteristics of zebrafish as an animal model to study the MGBA. The exploitation of zebrafish as an amenable genetic model combined with in vivo imaging capabilities and gnotobiotic approaches at the whole organism level may reveal novel mechanistic insights into microbiota–gut–brain interactions, especially in the context of neurological disorders such as autism spectrum disorder and Alzheimer’s disease.


1953 ◽  
Vol 99 (416) ◽  
pp. 521-530 ◽  
Author(s):  
John N. Walton

The amnestic-confabulatory symptom-complex to which the eponymous title of Korsakov's syndrome is usually given was probably first described by the Swedish physician Magnus Huss (1807–90), who spent the greater part of his lifetime in the study of alcoholism. There is, however, no doubt that Korsakov's (1890) paper on the subject gave an excellent description of the syndrome, and stressed the fact that whereas it often developed in patients with alcoholism and polyneuritis, numerous other metabolic and neurological disorders could be complicated by the characteristic mental changes. Indeed, in Korsakov's (1890) own series of cases alcoholics were in the minority. One of the neurological conditions in which the syndrome has been described significantly often is spontaneous subarachnoid haemorrhage. The first reports of the association were probably those of Flatau (1918 and 1921), and it was discussed in some detail by Goldflam (1923) and Herman (1925 and 1926). Each of these authors described the mental symptoms exhaustively but gave no actual case-histories; the first fully documented cases in the literature were the two reported by Hall (1929). Single cases have since been described by Cubitt (1930), Popow (1930) and Kulkow (1935), and in 1939 Tarachow gave an extensive review of the literature and reported an additional 3 cases. It is remarkable that since 1939 the association has received little attention, although it has been mentioned by Sands (1941) and Meadows (1951).


Sign in / Sign up

Export Citation Format

Share Document