scholarly journals Effects of Pregnancy Anesthesia on Fetal Nervous System

2021 ◽  
Vol 11 ◽  
Author(s):  
Xingyue Li ◽  
Xi Jiang ◽  
Ping Zhao

The effects of general anesthesia on the developing brain remain a great concern in the medical field and even in the public, and most researches in this area focus on infancy and childhood. In recent years, with the continuous development of medical technology, the number of operations during pregnancy is increasing, however, studies on general anesthesia during pregnancy are relatively lacking. The mid-trimester of pregnancy is a critical period, and is regarded as a safe period for surgery, but it is a fragile period for the development of the central nervous system and is particularly sensitive to the impact of the environment. Our research group found that general anesthesia may have adverse effects on fetal neurodevelopment during the mid-trimester. Therefore, in this review, we summarize the characteristics of anesthesia during pregnancy, and the related research of the anesthesia’s impacts on the development of central nervous system were introduced.

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4830 ◽  
Author(s):  
Murilo S. de Abreu ◽  
João P.M. Messias ◽  
Per-Ove Thörnqvist ◽  
Svante Winberg ◽  
Marta C. Soares

The monoamines serotonin and dopamine are important neuromodulators present in the central nervous system, known to be active regulators of social behaviour in fish as in other vertebrates. Our aim was to investigate the region-specific brain monoaminergic differences arising when individual cleaners face a client (mutualistic context) compared to when they are introduced to another conspecific (conspecific context), and to understand the relevance of visual assessment compared to the impact of physical contact with any partner. We demonstrated that serotoninergic activity at the diencephalon responds mostly to the absence of physical contact with clients whereas cerebellar dopaminergic activity responds to actual cleaning engagement. We provide first insights on the brain’s monoaminergic (region-specific) response variations, involved in the expression of cleaner fishes’ mutualistic and conspecific behaviour. These results contribute to a better understanding of the monoaminergic activity in accordance to different socio-behavioural contexts.


PEDIATRICS ◽  
1957 ◽  
Vol 19 (5) ◽  
pp. 949-957
Author(s):  
William A. Hawke ◽  
John S. Prichard

THE SEMINAR was conducted in four 3-hour sessions and aimed to cover the more important features of pediatric neurology. DEVELOPMENT Dr. Hawke reviewed the normal development of the central nervous system in the infant and child which is so important in the assessment of neurologic disorders in this age group. It was noted that the nervous system was particularly immature and changing rapidly in the first 2 years of life. Development was related to myelination and it was emphasized that this was not a steady process but a pattern of sequences of rapid and slow growth. Motor and sensory development appeared to develop from above and to proceed downward, so that eye-control develops before hand- and legcontrol. Development was related to three functioning levels of the central nervous system—the brain stem, the archipallium, and the neopallium. It was observed that the newborn baby functioned at the brain stem level, and to illustrate this an example was given of the hydranencephalic baby which behaves perfectly normally for the first few weeks of life. The anchipallium, which includes part of the temporal lobe, the cingulate gyrus and basal ganglia, supervenes on the brain stem and may be considered responsible for the basic emotions and some primitive motor and sensory control. The neopallium, which includes most of the cerebral hemisphere, becomes dominant in primates. Its function is intellectual rather than emotional and is responsible for skills, discrimination and fine movements. The clinical application of these developmental patterns are innumerable but illustrations were given of changes in physical signs in static brain lesions.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lintao Wang ◽  
Zhiguang Ren ◽  
Li Ma ◽  
Yanjie Han ◽  
Wenqiang Wei ◽  
...  

COVID-19 has spread rapidly worldwide since its outbreak and has now become a major public health problem. More and more evidence indicates that SARS-CoV-2 may not only affect the respiratory system but also cause great harm to the central nervous system. Therefore, it is extremely important to explore in-depth the impact of SARS-CoV-2 infection on the nervous system. In this paper, the possible mechanisms of SARS-CoV-2 invading the central nervous system during COVID-19, and the neurological complications caused by SARS-CoV-2 infection were reviewed.


Author(s):  
Onur Akın ◽  
İbrahim Eker ◽  
Mutluay Arslan ◽  
Süleyman Tolga Yavuz ◽  
Sevil Akman ◽  
...  

AbstractBackground:Childhood obesity may lead to neuronal impairment in both the peripheral and the central nervous system. This study aimed to investigate the impact of obesity and insulin resistance (IR) on the central nervous system and neurocognitive functions in children.Methods:Seventy-three obese children (38 male and 35 female) and 42 healthy children (21 male and 21 female) were recruited. Standard biochemical indices and IR were evaluated. The Wechsler Intelligence Scale for Children-Revised (WISC-R) and electroencephalography (EEG) were administered to all participants. The obese participants were divided into two groups based on the presence or absence of IR, and the data were compared between the subgroups.Results:Only verbal scores on the WISC-R in the IR+ group were significantly lower than those of the control and IR– groups. There were no differences between the groups with respect to other parameters of the WISC-R or the EEG. Verbal scores of the WISC-R were negatively correlated with obesity duration and homeostatic model assessment-insulin resistance (HOMA-IR) values. EEGs showed significantly more frequent ‘slowing during hyperventilation’ (SDHs) in obese children than non-obese children.Conclusions:Neurocognitive functions, particularly verbal abilities, were impaired in obese children with IR. An early examination of cognitive functions may help identify and correct such abnormalities in obese children.


2010 ◽  
Vol 16 (10) ◽  
pp. 1173-1177 ◽  
Author(s):  
M. Shahbazi ◽  
H. Ebadi ◽  
D. Fathi ◽  
D. Roshandel ◽  
M. Mohamadhosseni ◽  
...  

Background: The multifunctional cytokine interleukin-6 (IL-6) is involved in inflammatory processes in the central nervous system. It is well documented that amount of IL-6 is increased in serum, cerebrospinal fluid and central nervous system lesions of patients with multiple sclerosis. A single nucleotide polymorphism at position -174 in the IL-6 gene promotor appears to influence IL-6 expression. Recently, several researchers have focused on HLA-DRB alleles, specifically HLA-DRB1*1501, as a potential risk allele in the pathogenesis of multiple sclerosis. Objective: To investigate the possible influence of IL-6/-174 polymorphisms on susceptibility to multiple sclerosis and its integration with HLA-DRB1*1501. Genomic DNA was extracted from whole blood of 345 patients with multiple sclerosis and 426 control subjects. Method: The SSP-PCR method was used to determine genotypes and Fisher’s exact test was applied to determine differences between groups. HLA-DRB1*1501 was observed more frequently among multiple sclerosis patients compared with healthy subjects (45% and 34%, respectively; OR = 1.6, 95% CI = 1.2—2.2, p = 0.0018). At the IL-6/-174 position, the G allele had higher frequency among multiple sclerosis patients compared with controls (77% and 70%, respectively; OR = 1.4, 95% CI = 1.1—1.8, p = 0.0038). This difference was more significant among HLA-DRB1*1501-positive patients and controls (81% and 67%, respectively; OR = 1.9, 95% CI = 1.5—2.5, p < 0.0001). Results: Our results have shown that the G allele at the IL-6/-174 promoter polymorphism may be associated with development of multiple sclerosis in this population, and may be strengthened by HLA-DRB1*1501. Conclusions: We suggest more studies to confirm these results in other populations.


Redox Biology ◽  
2016 ◽  
Vol 9 ◽  
pp. 144-156 ◽  
Author(s):  
Calina Betlazar ◽  
Ryan J. Middleton ◽  
Richard B. Banati ◽  
Guo-Jun Liu

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Ilse Bollaerts ◽  
Jessie Van houcke ◽  
Lien Andries ◽  
Lies De Groef ◽  
Lieve Moons

Damage to the central nervous system (CNS) is one of the leading causes of morbidity and mortality in elderly, as repair after lesions or neurodegenerative disease usually fails because of the limited capacity of CNS regeneration. The causes underlying this limited regenerative potential are multifactorial, but one critical aspect is neuroinflammation. Although classically considered as harmful, it is now becoming increasingly clear that inflammation can also promote regeneration, if the appropriate context is provided. Here, we review the current knowledge on how acute inflammation is intertwined with axonal regeneration, an important component of CNS repair. After optic nerve or spinal cord injury, inflammatory stimulation and/or modification greatly improve the regenerative outcome in rodents. Moreover, the hypothesis of a beneficial role of inflammation is further supported by evidence from adult zebrafish, which possess the remarkable capability to repair CNS lesions and even restore functionality. Lastly, we shed light on the impact of aging processes on the regenerative capacity in the CNS of mammals and zebrafish. As aging not only affects the CNS, but also the immune system, the regeneration potential is expected to further decline in aged individuals, an element that should definitely be considered in the search for novel therapeutic strategies.


2020 ◽  
Author(s):  
Ting-Ting Luo ◽  
Chun-Qiu Dai ◽  
Jia-Qi Wang ◽  
Zheng-Mei Wang ◽  
Yi Yang ◽  
...  

Abstract Objectives: Drp1 is widely expressed in the mouse central nervous system and plays a role in inducing the mitochondrial fission process. Many diseases are associated with Drp1 and mitochondria. However, since the exact distribution of Drp1 has not been specifically observed, it is difficult to determine the impact of anti-Drp1 molecules on the human body. Clarifying the specific Drp1 distribution could be a good approach to targeted treatment or prognosis. Methods: We visualized the distribution of Drp1 in different brain regions and explicated the relationship between Drp1 and mitochondria. GAD67-GFP knock-in mice were utilized to detect the expression patterns of Drp1 in GABAergic neurons. We also further analyzed Drp1 expression in human malignant glioma tissue. Results : Drp1 was widely but heterogeneously distributed in the central nervous system. Further observation indicated that Drp1 was highly and heterogeneously expressed in inhibitory neurons. Under transmission electron microscopy, the distribution of Drp1 was higher in dendrites than other areas in neurons, and only a small amount of Drp1 was localized in mitochondria. In human malignant glioma, the fluorescence intensity of Drp1 increased from grade I-III, while grade IV showed a declining trend. Conclusion: In this study, we observed a wide heterogeneous distribution of Drp1 in the central nervous system, which might be related to the occurrence and development of neurologic disease. We hope that the relationship between Drp1 and mitochondria may will to therapeutic guidance in the clinic.


Sign in / Sign up

Export Citation Format

Share Document