scholarly journals Recent Research Progress (2015–2021) and Perspectives on the Pharmacological Effects and Mechanisms of Tanshinone IIA

2021 ◽  
Vol 12 ◽  
Author(s):  
Chenhui Zhong ◽  
Zuan Lin ◽  
Liyuan Ke ◽  
Peiying Shi ◽  
Shaoguang Li ◽  
...  

Tanshinone IIA (Tan IIA) is an important characteristic component and active ingredient in Salvia miltiorrhiza, and its various aspects of research are constantly being updated to explore its potential application. In this paper, we review the recent progress on pharmacological activities and the therapeutic mechanisms of Tan IIA according to literature during the years 2015–2021. Tan IIA shows multiple pharmacological effects, including anticarcinogenic, cardiovascular, nervous, respiratory, urinary, digestive, and motor systems activities. Tan IIA modulates multi-targets referring to Nrf2, AMPK, GSK-3β, EGFR, CD36, HO-1, NOX4, Beclin-1, TLR4, TNF-α, STAT3, Caspase-3, and bcl-2 proteins and multi-pathways including NF-κB, SIRT1/PGC1α, MAPK, SREBP-2/Pcsk9, Wnt, PI3K/Akt/mTOR pathways, TGF-β/Smad and Hippo/YAP pathways, etc., which directly or indirectly influence disease course. Further, with the reported targets, the potential effects and possible mechanisms of Tan IIA against diseases were predicted by bioinformatic analysis. This paper provides new insights into the therapeutic effects and mechanisms of Tan IIA against diseases.

2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Lunjie Lu ◽  
Jun Zhou ◽  
Jingying Zhang ◽  
Jun Che ◽  
Yang Jiao ◽  
...  

Tanshinone IIA sodium sulfonate (TSS) is a water-soluble derivative of tanshinone IIA, which is the main pharmacologically active component of Salvia miltiorrhiza. This study aimed to verify the preventive and therapeutic effects of TSS and its combined therapeutic effects with magnesium isoglycyrrhizinate (MI) in D-galactosamine- (D-Gal-) induced acute liver injury (ALI) in mice. The potential regulatory mechanisms of TSS on ALI were also examined. Our results may provide a basis for the development of novel therapeutics for ALI.


2020 ◽  
Vol 4 (4) ◽  
Author(s):  
Guoqiang Yang ◽  
Lu Jiao

Objective: To review the research progress of using Chinese medicine ginseng to prevent and treat AIDS in China. Methods: Based on the method of TCM syndrome differentiation, Chinese medical researchers divided AIDS into four types: heat toxin stagnation type, Qi and blood deficiency type, stasis and internal resistance type, and Qi and Yin injury type. Results: The therapeutic effects of the compound preparation of traditional Chinese medicine were significant, such as Aikang capsule, Tangcao tablet, Wuweilingqi capsule, Aining granule, compound Sanhuang powder, etc. Astragalus, licorice, honeysuckle, Scutellaria, bupleurum, Salvia miltiorrhiza, Viola, Hedyotis diffusa and other 8 kinds of traditional Chinese medicine have been proved to have anti HIV effect. Conclusion: Among the 27 kinds of Chinese medicine ginseng, Andrographis paniculata, Viola, Arnebia, Arctium lappa, Sophora flavescens, honeysuckle, Guanzhong, Prunella, Coptis, Wolfberry, Wedelia and epimedium have been proved to have the effect of preventing HIV replication.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Jia-Wen Song ◽  
Jia-Ying Long ◽  
Long Xie ◽  
Lin-Lin Zhang ◽  
Qing-Xuan Xie ◽  
...  

Abstract Scutellaria baicalensis Georgi. (SB) is a common heat-clearing medicine in traditional Chinese medicine (TCM). It has been used for thousands of years in China and its neighboring countries. Clinically, it is mostly used to treat diseases such as cold and cough. SB has different harvesting periods and processed products for different clinical symptoms. Botanical researches proved that SB included in the Chinese Pharmacopoeia (1st, 2020) was consistent with the medicinal SB described in ancient books. Modern phytochemical analysis had found that SB contains hundreds of active ingredients, of which flavonoids are its major components. These chemical components are the material basis for SB to exert pharmacological effects. Pharmacological studies had shown that SB has a wide range of pharmacological activities such as antiinflammatory, antibacterial, antiviral, anticancer, liver protection, etc. The active ingredients of SB were mostly distributed in liver and kidney, and couldn't be absorbed into brain via oral absorption. SB’s toxicity was mostly manifested in liver fibrosis and allergic reactions, mainly caused by baicalin. The non-medicinal application prospects of SB were broad, such as antibacterial plastics, UV-resistant silk, animal feed, etc. In response to the Coronavirus Disease In 2019 (COVID-19), based on the network pharmacology research, SB’s active ingredients may have potential therapeutic effects, such as baicalin and baicalein. Therefore, the exact therapeutic effects are still need to be determined in clinical trials. SB has been reviewed in the past 2 years, but the content of these articles were not comprehensive and accurate. In view of the above, we made a comprehensive overview of the research progress of SB, and expect to provide ideas for the follow-up study of SB.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Wei Zou ◽  
Cheng Qian ◽  
Shan Zhang ◽  
Xueting Wan ◽  
Zhonghong Wei ◽  
...  

Pathological angiogenesis, as exhibited by aberrant vascular structure and function, has been well deemed to be a hallmark of cancer and various ischemic diseases. Therefore, strategies to normalize vasculature are of potential therapeutic interest in these diseases. Recently, identifying bioactive compounds from medicinal plant extracts to reverse abnormal vasculature has been gaining increasing attention. Tanshinone IIA (Tan IIA), an active component of Salvia miltiorrhiza, has been shown to play significant roles in improving blood circulation and delaying tumor progression. However, the underlying mechanisms responsible for the therapeutic effects of Tan IIA are not fully understood. Herein, we established animal models of HT-29 human colon cancer xenograft and hind limb ischemia to investigate the role of Tan IIA in regulating abnormal vasculature. Interestingly, our results demonstrated that Tan IIA could significantly promote the blood flow, alleviate the hypoxia, improve the muscle quality, and ameliorate the pathological damage after ischemic insult. Meanwhile, we also revealed that Tan IIA promoted the integrity of vascular structure, reduced vascular leakage, and attenuated the hypoxia in HT-29 tumors. Moreover, the circulating angiopoietin 2 (Ang2), which is extremely high in these two pathological states, was substantially depleted in the presence of Tan IIA. Also, the activation of Tie2 was potentiated by Tan IIA, resulting in decreased vascular permeability and elevated vascular integrity. Mechanistically, we uncovered that Tan IIA maintained vascular stability by targeting the Ang2-Tie2-AKT-MLCK cascade. Collectively, our data suggest that Tan IIA normalizes vessels in tumors and ischemic injury via regulating the Ang2/Tie2 signaling pathway.


2020 ◽  
Vol 1 (3) ◽  
Author(s):  
Irum Naz ◽  
Myriam Merarchi ◽  
Shanaya Ramchandani ◽  
Muhammad Rashid Khan ◽  
Muhammad Nouman Malik ◽  
...  

Tanshinone is a herbal medicinal compound described in Chinese medicine, extracted from the roots of Salvia miltiorrhiza (Danshen). This family of compounds, including Tanshinone IIA and Tanshinone I, have shown remarkable potential as anti-cancer molecules, especially against breast, cervical, colorectal, gastric, lung, and prostate cancer cell lines, as well as leukaemia, melanoma, and hepatocellular carcinoma among others. Recent data has indicated that Tanshinones can modulate multiple molecular pathways such as PI3K/Akt, MAPK and JAK/STAT3, and exert their pharmacological effects against different malignancies. In addition, preclinical and clinical data, together with the safety profile of Tanshinones, encourage further applications of these compounds in cancer therapeutics. In this review article, the effect of Tanshinones on different cancers, challenges in their pharmacological development, and opportunities to harness their clinical potential have been documented.


2021 ◽  
Vol 22 (13) ◽  
pp. 7205
Author(s):  
Matheus V. C. Grahl ◽  
Augusto F. Uberti ◽  
Valquiria Broll ◽  
Paula Bacaicoa-Caruso ◽  
Evelin F. Meirelles ◽  
...  

Infection by Proteus mirabilis causes urinary stones and catheter incrustation due to ammonia formed by urease (PMU), one of its virulence factors. Non-enzymatic properties, such as pro-inflammatory and neurotoxic activities, were previously reported for distinct ureases, including that of the gastric pathogen Helicobacter pylori. Here, PMU was assayed on isolated cells to evaluate its non-enzymatic properties. Purified PMU (nanomolar range) was tested in human (platelets, HEK293 and SH-SY5Y) cells, and in murine microglia (BV-2). PMU promoted platelet aggregation. It did not affect cellular viability and no ammonia was detected in the cultures’ supernatants. PMU-treated HEK293 cells acquired a pro-inflammatory phenotype, producing reactive oxygen species (ROS) and cytokines IL-1β and TNF-α. SH-SY5Y cells stimulated with PMU showed high levels of intracellular Ca2+ and ROS production, but unlike BV-2 cells, SH-SY5Y did not synthesize TNF-α and IL-1β. Texas Red-labeled PMU was found in the cytoplasm and in the nucleus of all cell types. Bioinformatic analysis revealed two bipartite nuclear localization sequences in PMU. We have shown that PMU, besides urinary stone formation, can potentially contribute in other ways to pathogenesis. Our data suggest that PMU triggers pro-inflammatory effects and may affect cells beyond the renal system, indicating a possible role in extra-urinary diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ilandarage Menu Neelaka Molagoda ◽  
Jayasingha Arachchige Chathuranga C Jayasingha ◽  
Yung Hyun Choi ◽  
Rajapaksha Gedara Prasad Tharanga Jayasooriya ◽  
Chang-Hee Kang ◽  
...  

AbstractFisetin is a naturally occurring flavonoid that possesses several pharmacological benefits including anti-inflammatory activity. However, its precise anti-inflammatory mechanism is not clear. In the present study, we found that fisetin significantly inhibited the expression of proinflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), and cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Additionally, fisetin attenuated LPS-induced mortality and abnormalities in zebrafish larvae and normalized the heart rate. Fisetin decreased the recruitment of macrophages and neutrophils to the LPS-microinjected inflammatory site in zebrafish larvae, concomitant with a significant downregulation of proinflammatory genes, such as inducible NO synthase (iNOS), cyclooxygenase-2a (COX-2a), IL-6, and TNF-α. Fisetin inhibited the nuclear localization of nuclear factor-kappa B (NF-κB), which reduced the expression of pro-inflammatory genes. Further, fisetin inactivated glycogen synthase kinase 3β (GSK-3β) via phosphorylation at Ser9, and inhibited the degradation of β-catenin, which consequently promoted the localization of β-catenin into the nucleus. The pharmacological inhibition of β-catenin with FH535 reversed the fisetin-induced anti-inflammatory activity and restored NF-κB activity, which indicated that fisetin-mediated activation of β-catenin results in the inhibition of LPS-induced NF-κB activity. In LPS-microinjected zebrafish larvae, FH535 promoted the migration of macrophages to the yolk sac and decreased resident neutrophil counts in the posterior blood island and induced high expression of iNOS and COX-2a, which was accompanied by the inhibition of fisetin-induced anti-inflammatory activity. Altogether, the current study confirmed that the dietary flavonoid, fisetin, inhibited LPS-induced inflammation and endotoxic shock through crosstalk between GSK-3β/β-catenin and the NF-κB signaling pathways.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4409
Author(s):  
Jinjoo Kang ◽  
Soyoung Lee ◽  
Namkyung Kim ◽  
Hima Dhakal ◽  
Taeg-Kyu Kwon ◽  
...  

The extracts of Schisandra chinensis (Turcz.) Baill. (Schisandraceae) have various therapeutic effects, including inflammation and allergy. In this study, gomisin M2 (GM2) was isolated from S. chinensis and its beneficial effects were assessed against atopic dermatitis (AD). We evaluated the therapeutic effects of GM2 on 2,4-dinitrochlorobenzene (DNCB) and Dermatophagoides farinae extract (DFE)-induced AD-like skin lesions with BALB/c mice ears and within the tumor necrosis factor (TNF)-α and interferon (IFN)-γ-stimulated keratinocytes. The oral administration of GM2 resulted in reduced epidermal and dermal thickness, infiltration of tissue eosinophils, mast cells, and helper T cells in AD-like lesions. GM2 suppressed the expression of IL-1β, IL-4, IL-5, IL-6, IL-12a, and TSLP in ear tissue and the expression of IFN-γ, IL-4, and IL-17A in auricular lymph nodes. GM2 also inhibited STAT1 and NF-κB phosphorylation in DNCB/DFE-induced AD-like lesions. The oral administration of GM2 reduced levels of IgE (DFE-specific and total) and IgG2a in the mice sera, as well as protein levels of IL-4, IL-6, and TSLP in ear tissues. In TNF-α/IFN-γ-stimulated keratinocytes, GM2 significantly inhibited IL-1β, IL-6, CXCL8, and CCL22 through the suppression of STAT1 phosphorylation and the nuclear translocation of NF-κB. Taken together, these results indicate that GM2 is a biologically active compound that exhibits inhibitory effects on skin inflammation and suggests that GM2 might serve as a remedy in inflammatory skin diseases, specifically on AD.


2021 ◽  
Vol 11 (8) ◽  
pp. 3637
Author(s):  
Jun-Ho Chang ◽  
Dae-Won Kim ◽  
Seong-Gon Kim ◽  
Tae-Woo Kim

Damaged dental pulp undergoes oxidative stress and 4-hexylresorcinol (4HR) is a well-known antioxidant. In this study, we aimed to evaluate the therapeutic effects of a 4HR ointment on damaged dental pulp. Pulp cells from rat mandibular incisor were cultured and treated with 4HR or resveratrol (1–100 μM). These treatments (10–100 μM) exerted a protective effect during subsequent hydrogen peroxide treatments. The total antioxidant capacity and glutathione peroxidase activity were significantly increased following 4HR or resveratrol treatment (p < 0.05), while the expression levels of TNF-α and IL1β were decreased following the exposure to 4HR pre-treatment in an in vitro model. Additionally, the application of 4HR ointment in an exposed dental pulp model significantly reduced the expression of TNF-α and IL1β (p < 0.05). Conclusively, 4HR exerted protective effects against oxidative stress in dental pulp tissues through downregulating TNF-α and IL1β.


Sign in / Sign up

Export Citation Format

Share Document