scholarly journals Genomic-Wide Analysis of the PLC Family and Detection of GmPI-PLC7 Responses to Drought and Salt Stresses in Soybean

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhi-Feng Chen ◽  
Jing-Na Ru ◽  
Guo-Zhong Sun ◽  
Yan Du ◽  
Jun Chen ◽  
...  

Phospholipase C (PLC) performs significant functions in a variety of biological processes, including plant growth and development. The PLC family of enzymes principally catalyze the hydrolysis of phospholipids in organisms. This exhaustive exploration of soybean GmPLC members using genome databases resulted in the identification of 15 phosphatidylinositol-specific PLC (GmPI-PLC) and 9 phosphatidylcholine-hydrolyzing PLC (GmNPC) genes. Chromosomal location analysis indicated that GmPLC genes mapped to 10 of the 20 soybean chromosomes. Phylogenetic relationship analysis revealed that GmPLC genes distributed into two groups in soybean, the PI-PLC and NPC groups. The expression patterns and tissue expression analysis showed that GmPLCs were differentially expressed in response to abiotic stresses. GmPI-PLC7 was selected to further explore the role of PLC in soybean response to drought and salt stresses by a series of experiments. Compared with the transgenic empty vector (EV) control lines, over-expression of GmPI-PLC7 (OE) conferred higher drought and salt tolerance in soybean, while the GmPI-PLC7-RNAi (RNAi) lines exhibited the opposite phenotypes. Plant tissue staining and physiological parameters observed from drought- and salt-stressed plants showed that stress increased the contents of chlorophyll, oxygen free radical (O2–), hydrogen peroxide (H2O2) and NADH oxidase (NOX) to amounts higher than those observed in non-stressed plants. This study provides new insights in the functional analysis of GmPLC genes in response to abiotic stresses.

2015 ◽  
Vol 140 (3) ◽  
pp. 223-232 ◽  
Author(s):  
Jiuxing Lu ◽  
Weiru Yang ◽  
Qixiang Zhang

Control of development is an important issue in the production of ornamental plants. Gibberellins (GAs) play a key role in regulating plant growth and development. DELLA is nuclear negative regulators of GA signaling. We identified two DELLA homologous genes, PmDELLA1 and PmDELLA2, in the genome of mei (Prunus mume) genome. We analyzed the structure, expression patterns and molecular functions of both genes. Tissue expression analysis showed that both genes were transcriptionally active. PmDELLA1 showed higher expression in seeds than PmDELLA2. This indicated that PmDELLA2 plays different roles from PmDELLA1 in seed germination. The expressions of both genes at various flowering stages were relatively low. We speculated that PmDELLAs might be positive regulators of flowering by releasing the repression of GA during floral blooming. Transgenic arabidopsis (Arabidopsis thaliana) lines overexpressing the two genes showed dwarf and delayed flowering. We confirmed that the two PmDELLAs were partially conserved with genes encoding DELLA proteins in arabidopsis. Our bioinformatics and functional analyses provide information that may be valuable to improve the economic, agronomic and ecological properties of mei and other Rosaceae fruit trees.


2021 ◽  
Author(s):  
XuTing Song ◽  
Jia-Nan Zhang ◽  
Duo-Wei Zhao ◽  
Yu-Fei Zhai ◽  
Qi Lu ◽  
...  

Insulin-like growth factor 1 (IGF1),also known as somatomedin C, is essential for the regulation of animal growth and development. In many species, the IGF1 gene can be alternatively spliced into multiple transcripts, encoding different pre-pro-IGF1 proteins. However, the exact alternative splicing patterns of IGF1 and the sequence information of different splice variants in sheep are still unclear. In this study, four splice variants (class 1-Ea, class 1-Eb, class 2-Ea, and class 2-Eb) were obtained, but no IGF1 Ec, similar to that found in other species, was discovered. Bioinformatics analysis showed that the four splice variants shared the same mature peptide (70 amino acids) and possessed distinct signal peptides and E peptides. Tissue expression analysis indicated that the four splice variants were broadly expressed in all tested tissues and were most abundantly expressed in the liver. In most tissues and stages, the expression of class 1-Ea was highest, and the expression of other splice variants was low. Overall, levels of the four IGF1 splice variants at the fetal and lamb stages were higher than those at the adult stage. Overexpression of the four splice variants significantly increased fibroblast proliferation and inhibited apoptosis (P < 0.05). In contrast, silencing IGF1 Ea or IGF1 Eb with siRNA significantly inhibited proliferation and promoted apoptosis (P < 0.05). Among the four splice variants, class 1-Ea had a more evident effect on cell proliferation and apoptosis. In summary, the four ovine IGF1 splice variants have different structures and expression patterns and might have different biological functions.


Plant Omics ◽  
2019 ◽  
pp. 37-47 ◽  
Author(s):  
Fatemeh Atashi Shirazi ◽  
Hooman Razi ◽  
Ali Niazi ◽  
Abbas Alemzadeh

WRKY transcription factors play important roles in regulation of various plant biological processes, including response to abiotic stresses. WRKY genes might be potential targets for transgenic breeding to enhance stress tolerance in rapeseed (Brassica napus). The present study aimed to clone and characterize WRKY57 (BnWRKY57) gene derived from B. napus and to analyze patterns of BnWRKY57 expression under drought and salt stresses in two B. napus cultivars with different levels of tolerance to drought and salt. The full-length coding region of BnWRKY57 gene with 882bp long (GenBank Accession Number: MG699908) was cloned and sequenced. BnWRKY57 gene encodes a hydrophilic polypeptide of 293 amino acids. It shared high homology with other known WRKY57s from Brassicaceae family. The promoter of BnWRKY57 gene contained cis regulatory elements involved in response to phytohormones, light, biotic and abiotic stresses suggesting this gene may play a role to modulate different signaling pathways. Real time quantitative RT-PCR analysis revealed that BnWRKY57 expression was responsive to drought and salt stresses. BnWRKY57 gene showed different expression patterns between leaves and roots and also between the B. napus cultivars under stress conditions. Overall, the findings suggest that BnWRKY57 gene may contribute to adaptive responses to drought and salt stresses in B. napus.


Horticulturae ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 117
Author(s):  
Yan-Li Liu ◽  
Shuai Liu ◽  
Jing-Jing Xiao ◽  
Guo-Xin Cheng ◽  
Haq Saeed ul ◽  
...  

Pepper is a thermophilic crop, shallow-rooted plant that is often severely affected by abiotic stresses such as heat, salt, and drought. The growth and development of pepper is seriously affected by adverse stresses, resulting in decreases in the yield and quality of pepper crops. Small heat shock proteins (s HSPs) play a crucial role in protecting plant cells against various stresses. A previous study in our laboratory showed that the expression level of CaHSP18.1a was highly induced by heat stress, but the function and mechanism of CaHSP18.1a responding to abiotic stresses is not clear. In this study, we first analyzed the expression of CaHSP18.1a in the thermo-sensitive B6 line and thermo-tolerant R9 line and demonstrated that the transcription of CaHSP18.1a was strongly induced by heat stress, salt, and drought stress in both R9 and B6, and that the response is more intense and earlier in the R9 line. In the R9 line, the silencing of CaHSP18.1a decreased resistance to heat, drought, and salt stresses. The silencing of CaHSP18.1a resulted in significant increases in relative electrolyte leakage (REL) and malonaldehyde (MDA) contents, while total chlorophyll content decreased under heat, salt, and drought stresses. Overexpression analyses of CaHSP18.1a in transgenic Arabidopsis further confirmed that CaHSP18.1a functions positively in resistance to heat, drought, and salt stresses. The transgenic Arabidopsis had higherchlorophyll content and activities of superoxide dismutase, catalase, and ascorbate peroxidase than the wild type (WT). However, the relative conductivity and MDA content were decreased in transgenic Arabidopsis compared to the wild type (WT). We further showed that the CaHSP18.1a protein is localized to the cell membrane. These results indicate CaHSP18.1a may act as a positive regulator of responses to abiotic stresses.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Luyao Wang ◽  
Jin Han ◽  
Kening Lu ◽  
Menglin Li ◽  
Mengtao Gao ◽  
...  

Abstract Background An evolutionary model using diploid and allotetraploid cotton species identified 80 % of non-coding transcripts in allotetraploid cotton as being uniquely activated in comparison with its diploid ancestors. The function of the lncRNAs activated in allotetraploid cotton remain largely unknown. Results We employed transcriptome analysis to examine the relationship between the lncRNAs and mRNAs of protein coding genes (PCGs) in cotton leaf tissue under abiotic stresses. LncRNA expression was preferentially associated with that of the flanking PCGs. Selected highly-expressed lncRNA candidates (n = 111) were subjected to a functional screening pilot test in which virus-induced gene silencing was integrated with abiotic stress treatment. From this low-throughput screen, we obtained candidate lncRNAs relating to plant height and tolerance to drought and other abiotic stresses. Conclusions Low-throughput screen is an effective method to find functional lncRNA for further study. LncRNAs were more active in abiotic stresses than PCG expression, especially temperature stress. LncRNA XLOC107738 may take a cis-regulatory role in response to environmental stimuli. The degree to which lncRNAs are constitutively expressed may impact expression patterns and functions on the individual gene level rather than in genome-wide aggregate.


2021 ◽  
Vol 22 (9) ◽  
pp. 4634
Author(s):  
Wenxuan Du ◽  
Junfeng Yang ◽  
Lin Ma ◽  
Qian Su ◽  
Yongzhen Pang

The calcineurin B-like protein (CBL) and CBL-interacting protein kinase (CIPK) play important roles in plant signal transduction and response to abiotic stress. Plants of Medicago genus contain many important forages, and their growth is often affected by a variety of abiotic stresses. However, studies on the CBL and CIPK family member and their function are rare in Medicago. In this study, a total of 23 CBL and 58 CIPK genes were identified from the genome of Medicago sativa as an important forage crop, and Medicaog truncatula as the model plant. Phylogenetic analysis suggested that these CBL and CIPK genes could be classified into five and seven groups, respectively. Moreover, these genes/proteins showed diverse exon-intron organizations, architectures of conserved protein motifs. Many stress-related cis-acting elements were found in their promoter region. In addition, transcriptional analyses showed that these CBL and CIPK genes exhibited distinct expression patterns in various tissues, and in response to drought, salt, and abscisic acid treatments. In particular, the expression levels of MtCIPK2 (MsCIPK3), MtCIPK17 (MsCIPK11), and MtCIPK18 (MsCIPK12) were significantly increased under PEG, NaCl, and ABA treatments. Collectively, our study suggested that CBL and CIPK genes play crucial roles in response to various abiotic stresses in Medicago.


2000 ◽  
Vol 349 (2) ◽  
pp. 403-407 ◽  
Author(s):  
Lihua ZHENG ◽  
Long YU ◽  
Qiang TU ◽  
Min ZHANG ◽  
Hua HE ◽  
...  

Two novel members of the human cAMP-dependent protein kinase inhibitor (PKI) gene family, PKIB and PKIG, were cloned. The deduced proteins showed 70% and 90% identity with mouse PKIβ and PKIγ respectively. Both the already identified pseudosubstrate site and leucine-rich nuclear export signal motifs were defined from the 11 PKIs of different species. The PKIB and PKIG genes were mapped respectively to chromosome 6q21-22.1, using a radiation hybrid GB4 panel, and to chromosome 20q13.12-13.13, using a Stanford G3 panel. Northern-blot analysis of three PKI isoforms, including the PKIA identified previously, revealed significant differences in their expression patterns. PKIB had two transcripts of 1.9 kb and 1.4 kb. The former transcript was abundant in both placenta and brain and the latter was expressed most abundantly in placenta, highly in brain, heart, liver, pancreas, moderately in kidney, skeletal muscle and colon, and very little in the other eight tissues tested. PKIG was widely expressed as a 1.5-kb transcript with the highest level in heart, hardly detectable in thymus and peripheral blood leucocytes and was moderately expressed in the other tissues, with slightly different levels. However, PKIA was specifically expressed as two transcripts of 3.3 kb and 1.5 kb in heart and skeletal muscle. The distinct expression patterns of the three PKIs suggest that their roles in various tissues are probably different.


Agronomy ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 250 ◽  
Author(s):  
Ruimei Li ◽  
Shuai Yuan ◽  
Yingdui He ◽  
Jie Fan ◽  
Yangjiao Zhou ◽  
...  

Galactinol synthases (GolSs) are the key enzymes that participate in raffinose family oligosaccharides (RFO) biosynthesis, which perform a big role in modulating plant growth and response to biotic or abiotic stresses. To date, no systematic study of this gene family has been conducted in cassava (Manihot esculenta Crantz). Here, eight MeGolS genes are isolated from the cassava genome. Based on phylogenetic background, the MeGolSs are clustered into four groups. Through predicting the cis-elements in their promoters, it was discovered that all MeGolS members act as hormone-, stress-, and tissue-specific related elements to different degrees. MeGolS genes exhibit incongruous expression patterns in various tissues, indicating that different MeGolS proteins might have diverse functions. MeGolS1 and MeGolS3–6 are highly expressed in leaves and midveins. MeGolS3–6 are highly expressed in fibrous roots. Quantitative real-time Polymerase Chain Reaction (qRT-PCR) analysis indicates that several MeGolSs, including MeGolS1, 2, 5, 6, and 7, are induced by abiotic stresses. microRNA prediction analysis indicates that several abiotic stress-related miRNAs target the MeGolS genes, such as mes-miR156, 159, and 169, which also respond to abiotic stresses. The current study is the first systematic research of GolS genes in cassava, and the results of this study provide a basis for further exploration the functional mechanism of GolS genes in cassava.


2022 ◽  
Vol 23 (2) ◽  
pp. 891
Author(s):  
Wenjie Yue ◽  
Haobin Zhang ◽  
Xuming Sun ◽  
Ning Su ◽  
Qi Zhao ◽  
...  

Autophagy is an indispensable biological process and plays crucial roles in plant growth and plant responses to both biotic and abiotic stresses. This study systematically identified autophagy-related proteins (ATGs) in wheat and its diploid and tetraploid progenitors and investigated their genomic organization, structure characteristics, expression patterns, genetic variation, and regulation network. We identified a total of 77, 51, 29, and 30 ATGs in wheat, wild emmer, T. urartu and A. tauschii, respectively, and grouped them into 19 subfamilies. We found that these autophagy-related genes (ATGs) suffered various degrees of selection during the wheat’s domestication and breeding processes. The genetic variations in the promoter region of Ta2A_ATG8a were associated with differences in seed size, which might be artificially selected for during the domestication process of tetraploid wheat. Overexpression of TaVAMP727 improved the cold, drought, and salt stresses resistance of the transgenic Arabidopsis and wheat. It also promoted wheat heading by regulating the expression of most ATGs. Our findings demonstrate how ATGs regulate wheat plant development and improve abiotic stress resistance. The results presented here provide the basis for wheat breeding programs for selecting varieties of higher yield which are capable of growing in colder, drier, and saltier areas.


Sign in / Sign up

Export Citation Format

Share Document