scholarly journals Integrated Metabolomics and Transcriptome Analysis of Flavonoid Biosynthesis in Safflower (Carthamus tinctorius L.) With Different Colors

2021 ◽  
Vol 12 ◽  
Author(s):  
Rui Wang ◽  
Chaoxiang Ren ◽  
Shuai Dong ◽  
Chao Chen ◽  
Bin Xian ◽  
...  

Safflower is widely used in dying and in traditional medicine, and C-glucosylquinochalcones are the main metabolic species in the red color of safflower. Various safflower cultivars have flowers with different colors. However, the metabolic and transcriptional differences among safflower cultivars with different-colored flowers and the genes participating in C-glucosylquinochalcone biosynthesis are largely unknown. To provide insights on this issue, we performed integrated metabolomics and transcriptome analyses on the flavonoid biosynthesis of flowers of different colors in safflower (white-W, yellow-Y, light red-LR, and deep red-DR). The metabolic analysis showed that flavonoid metabolites showed great differences among the different colors of safflower. More flavonoid metabolic species were detected in Y and W, while C-glucosylquinochalcones were not detected in W. The content of C-glucosylquinochalcones increased with increasing color. Transcriptional analysis showed that most of the annotated flavonoid biosynthesis genes were significantly increased in W. The expression of genes related to flavonoid biosynthesis decreased with increasing color. We analyzed the candidate genes associated with C-glucosylquinochalcones, and an integration of the metabolic and transcriptional analyses indicated that the differential expression of the chalcone synthase (CHS) gene is one of the main reasons for the difference in flavonoid species and content among the different colors of safflower. Combined with the expression pattern analysis, these results indicated that HH_035319, HH_032689, and HH_018025 are likely involved in C-glucosylquinochalcones biosynthesis. In addition, we found that their expression showed greatly increased after the methyl jasmonate (MeJA) treatment. Therefore, HH_035319, HH_032689, and HH_018025 might participate in C-glucosylquinochalcone biosynthesis, which ultimately leads to the red color in safflower.

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 660
Author(s):  
Qingqing Liu ◽  
Di Gao ◽  
Wei Xu

According to the old surface coating process of European and American furniture, the surface of modified poplar is first differentiated pre-treatment, and then the bottom color modification and material color modification are respectively applied to the modified poplar after the surface differentiation treatment. The visual physical quantity and physical and chemical properties were measured and compared with mahogany, which is commonly used in old furniture in Europe and America to explore the effect of colorants and coloring steps, as well as different surface pretreatments on the coloring effect. Finally, it is concluded that continuous coloring operations can narrow the difference in brightness and red color value in the coloring layer of modified poplar and mahogany. Continuous coloring operations increase the difference between the yellow-green color values of modified poplar and mahogany. Therefore, the coloring difference between modified poplar and mahogany was affected by the colorant and coloring steps. Through color accumulation, the gap between the two in the target color coloring effect can be reduced, thereby reducing the difference between the coloring effect of modified poplar and mahogany.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuxin Fan ◽  
Jiayu Peng ◽  
Jiacheng Wu ◽  
Ping Zhou ◽  
Ruijie He ◽  
...  

Abstract Background Flavonoid biosynthesis in plants is primarily regulated at the transcriptional level by transcription factors modulating the expression of genes encoding enzymes in the flavonoid pathway. One of the most studied transcription factor complexes involved in this regulation consists of a MYB, bHLH and WD40. However, in Chinese Narcissus (Narcissus tazetta L. var. chinensis), a popular monocot bulb flower, the regulatory mechanism of flavonoid biosynthesis remains unclear. Results In this work, genes related to the regulatory complex, NtbHLH1 and a R2R3-MYB NtMYB6, were cloned from Chinese Narcissus. Phylogenetic analysis indicated that NtbHLH1 belongs to the JAF13 clade of bHLH IIIf subgroup, while NtMYB6 was highly homologous to positive regulators of proanthocyanidin biosynthesis. Both NtbHLH1 and NtMYB6 have highest expression levels in basal plates of Narcissus, where there is an accumulation of proanthocyanidin. Ectopic over expression of NtbHLH1 in tobacco resulted in an increase in anthocyanin accumulation in flowers, and an up-regulation of expression of the endogenous tobacco bHLH AN1 and flavonoid biosynthesis genes. In contrast, the expression level of LAR gene was significantly increased in NtMYB6-transgenic tobacco. Dual luciferase assays showed that co-infiltration of NtbHLH1 and NtMYB6 significantly activated the promoter of Chinese Narcissus DFR gene. Furthermore, a yeast two-hybrid assay confirmed that NtbHLH1 interacts with NtMYB6. Conclusions Our results suggest that NtbHLH1 may function as a regulatory partner by interacting directly with NtMYB6 to enhance proanthocyanidin accumulation in Chinese Narcissus.


1981 ◽  
Vol 36 (1-2) ◽  
pp. 30-34 ◽  
Author(s):  
Rainer Sütfeld ◽  
Rolf Wiermann

Abstract Chalcone synthase was isolated from both anthers of Tulipa cv. “Apeldoorn” and petals of Cosmos sulphureus Cav. After certain prepurification steps, the enzymes were further purified using gel chromatography on Sephadex G-200 followed by repeated hydroxylapatite absorption chromatography. Both the enzymes showed the same chromatographic properties. After gel chromatography as well as after the first hydroxylapatite fractionation, the reaction products appeared as flavanones. However, after the second hydroxylapatite step, production of chalcones was observed. Like the enzyme from tulip anthers, the synthase from Cosmos petals produced the correspondingly substituted chalcones when p-coumaroyl-CoA, caffeoyl-CoA and feruloyl-CoA, respectively, were used as substractes. In both the cases, the ratios of the different chalcones produced were found to be about the same. The appearance of chalcone synthesis in this in vitro assay is caused by the complete elimination of chalcone isomerase in the purification procedure. The importance of the isomerase for flavonoid biosynthesis, particularly in plant systems which are accumulating chalcones, is discussed.


2017 ◽  
Vol 61 (12) ◽  
Author(s):  
Jacob R. Chambers ◽  
Kathryn E. Cherny ◽  
Karin Sauer

ABSTRACT The biofilm life cycle is characterized by the transition of planktonic cells exhibiting high susceptibly to antimicrobial agents to a biofilm mode of growth characterized by high tolerance to antimicrobials, followed by dispersion of cells from the biofilm back into the environment. Dispersed cells, however, are not identical to planktonic cells but have been characterized as having a unique transitionary phenotype relative to biofilm and planktonic cells, with dispersed cells attaching in a manner similar to exponential-phase cells, but demonstrating gene expression patterns that are distinct from both exponential and stationary-phase planktonic cells. This raised the question whether dispersed cells are as susceptible as planktonic cells and whether the dispersion inducer or the antibiotic class affects the drug susceptibility of dispersed cells. Dispersed cells obtained in response to dispersion cues glutamate and nitric oxide (NO) were thus exposed to tobramycin and colistin. Although NO-induced dispersed cells were as susceptible to colistin and tobramycin as exponential-phase planktonic cells, glutamate-induced dispersed cells were susceptible to tobramycin but resistant to colistin. The difference in colistin susceptibility was independent of cellular c-di-GMP levels, with modulation of c-di-GMP failing to induce dispersion. Instead, drug susceptibility was inversely correlated with LPS modification system and the biofilm-specific transcriptional regulator BrlR. The susceptibility phenotype of glutamate-induced dispersed cells to colistin was found to be reversible, with dispersed cells being rendered as susceptible to colistin within 2 h postdispersion, though additional time was required for dispersed cells to display expression of genes indicative of exponential growth.


1987 ◽  
Vol 42 (11-12) ◽  
pp. 1193-1199 ◽  
Author(s):  
K. Stich ◽  
G. Forkmann

Flowers of Sinningia (syn. Rechsteineria) cardinalis contain glycosides of the flavones apigenin (4′-OH) and luteolin (3′,4′-OH) respectively, and of the related 3-deoxyanthocyanidins apigeninidin and luteolinidin. Studies on substrate specificity of the key enzyme of flavonoid biosynthesis, chalcone synthase, revealed that the 3′,4′-hydroxylated flavonoids are formed by hydroxylation of flavonoid compounds rather than by incorporation of caffeoyl-CoA into the flavonoid skeleton during the condensation reaction. In fact, flavonoid 3′-hydroxylase activity could be demonstrat­ed in the microsomal fraction of the flower extracts. The enzyme catalyses hydroxylation of naringenin and apigenin in the 3′-position to eriodictyol and luteolin, respectively, with NADPH as cofactor. Besides flavanone 3′-hydroxylase a further NADPH-dependent enzyme activity (flavone synthase II) was observed in the microsomal fraction catalysing the oxidation of naringenin to apigenin and of eriodictyol to luteolin. The Cytochrome P-450 inhibitor ancymidol was found to abolish completely flavone synthase II activity, whereas flavonoid 3′-hydroxylase activity was not impaired.


PLoS ONE ◽  
2020 ◽  
Vol 15 (6) ◽  
pp. e0233631
Author(s):  
Shicheng Zou ◽  
Muhammad Qasim Shahid ◽  
Chongbin Zhao ◽  
Man Wang ◽  
Yunlu Bai ◽  
...  

Plants ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 206 ◽  
Author(s):  
Pasquale Chiaiese ◽  
Giandomenico Corrado ◽  
Maria Minutolo ◽  
Amalia Barone ◽  
Angela Errico

Research on plant antioxidants, such as ascorbic acid (AsA) and polyphenols, is of increasing interest in plant science because of the health benefits and preventive role in chronic diseases of these natural compounds. Pepper (Capiscum annuum L.) is a major dietary source of antioxidants, especially AsA. Although considerable advance has been made, our understanding of AsA biosynthesis and its regulation in higher plants is not yet exhaustive. For instance, while it is accepted that AsA content in cells is regulated at different levels (e.g., transcriptional and post-transcriptional), their relative prominence is not fully understood. In this work, we identified and studied two pepper varieties with low and high levels of AsA to shed light on the transcriptional mechanisms that can account for the observed phenotypes. We quantified AsA and polyphenols in leaves and during fruit maturation, and concurrently, we analyzed the transcription of 14 genes involved in AsA biosynthesis, degradation, and recycling. The differential transcriptional analysis indicated that the higher expression of genes involved in AsA accumulation is a likely explanation for the observed differences in fruits. This was also supported by the identification of gene-metabolite relations, which deserve further investigation. Our results provide new insights into AsA differential accumulation in pepper varieties and highlight the phenotypic diversity in local germplasm, a knowledge that may ultimately contribute to the increased level of health-related phytochemicals.


Antibiotics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 240 ◽  
Author(s):  
Adriana Vollaro ◽  
Anna Esposito ◽  
Eliana Pia Esposito ◽  
Raffaele Zarrilli ◽  
Annalisa Guaragna ◽  
...  

Pregnadiene-11-hydroxy-16α,17α-epoxy-3,20-dione-1 (PYED-1), a heterocyclic corticosteroid derivative of deflazacort, exhibits broad-spectrum antibacterial activity against Gram-negative and Gram-positive bacteria. Here, we investigated the effect of PYED-1 on the biofilms of Staphylococcus aureus, an etiological agent of biofilm-based chronic infections such as osteomyelitis, indwelling medical device infections, periodontitis, chronic wound infections, and endocarditis. PYED-1 caused a strong reduction in biofilm formation in a concentration dependent manner. Furthermore, it was also able to completely remove the preformed biofilm. Transcriptional analysis performed on the established biofilm revealed that PYED-1 downregulates the expression of genes related to quorum sensing (agrA, RNAIII, hld, psm, and sarA), surface proteins (clfB and fnbB), secreted toxins (hla, hlb, and lukD), and capsular polysaccharides (capC). The expression of genes that encode two main global regulators, sigB and saeR, was also significantly inhibited after treatment with PYED-1. In conclusion, PYED-1 not only effectively inhibited biofilm formation, but also eradicated preformed biofilms of S. aureus, modulating the expression of genes related to quorum sensing, surface and secreted proteins, and capsular polysaccharides. These results indicated that PYED-1 may have great potential as an effective antibiofilm agent to prevent S. aureus biofilm-associated infections.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Jin-Xing Liao ◽  
Kai-Huai Li ◽  
Jin-Pei Wang ◽  
Jia-Ru Deng ◽  
Qiong-Guang Liu ◽  
...  

Abstract Background Xanthomonas citri pv. citri (Xcc) is a citrus canker causing Gram-negative bacteria. Currently, little is known about the biological and molecular responses of Xcc to low temperatures. Results Results depicted that low temperature significantly reduced growth and increased biofilm formation and unsaturated fatty acid (UFA) ratio in Xcc. At low temperature Xcc formed branching structured motility. Global transcriptome analysis revealed that low temperature modulates multiple signaling networks and essential cellular processes such as carbon, nitrogen and fatty acid metabolism in Xcc. Differential expression of genes associated with type IV pilus system and pathogenesis are important cellular adaptive responses of Xcc to cold stress. Conclusions Study provides clear insights into biological characteristics and genome-wide transcriptional analysis based molecular mechanism of Xcc in response to low temperature.


Sign in / Sign up

Export Citation Format

Share Document