scholarly journals Europan Molecular Indicators of Life Investigation (EMILI) for a Future Europa Lander Mission

2022 ◽  
Vol 2 ◽  
Author(s):  
William B. Brinckerhoff ◽  
Peter A. Willis ◽  
Antonio J. Ricco ◽  
Desmond A. Kaplan ◽  
Ryan M. Danell ◽  
...  

The Europan Molecular Indicators of Life Investigation (EMILI) is an instrument concept being developed for the Europa Lander mission currently under study. EMILI will meet and exceed the scientific and technical/resource requirements of the organic composition analyzer identified as a core instrument on the Lander. EMILI tightly couples two complementary analytical techniques, based on 1) liquid extraction and processing with capillary electrophoresis and 2) thermal and chemical extraction with gas chromatography, to robustly detect, structurally characterize, and quantify the broadest range of organics and other Europan chemicals over widely-varying concentrations. Dual processing and analysis paths enable EMILI to perform a thorough characterization of potential molecular biosignatures and contextual compounds in collected surface samples. Here we present a summary of the requirements, design, and development status of EMILI with projected scientific opportunities on the Europa Lander as well as on other potential life detection missions seeking potential molecular biosignatures in situ.

Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
J. I. Bennetch

In a recent study of the superplastic forming (SPF) behavior of certain Al-Li-X alloys, the relative misorientation between adjacent (sub)grains proved to be an important parameter. It is well established that the most accurate way to determine misorientation across boundaries is by Kikuchi line analysis. However, the SPF study required the characterization of a large number of (sub)grains in each sample to be statistically meaningful, a very time-consuming task even for comparatively rapid Kikuchi analytical techniques.In order to circumvent this problem, an alternate, even more rapid in-situ Kikuchi technique was devised, eliminating the need for the developing of negatives and any subsequent measurements on photographic plates. All that is required is a double tilt low backlash goniometer capable of tilting ± 45° in one axis and ± 30° in the other axis. The procedure is as follows. While viewing the microscope screen, one merely tilts the specimen until a standard recognizable reference Kikuchi pattern is centered, making sure, at the same time, that the focused electron beam remains on the (sub)grain in question.


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1047
Author(s):  
Jill Dill Pasteris ◽  
Yeunook Bae ◽  
Daniel E. Giammar ◽  
Sydney N. Dybing ◽  
Claude H. Yoder ◽  
...  

The identification and characterization of lead-bearing and associated minerals in scales on lead pipes are essential to understanding and predicting the mobilization of lead into drinking water. Despite its long-recognized usefulness in the unambiguous identification of crystalline and amorphous solids, distinguishing between polymorphic phases, and rapid and non-destructive analysis on the micrometer spatial scale, the Raman spectroscopy (RS) technique has been applied only occasionally in the analysis of scales in lead service lines (LSLs). This article illustrates multiple applications of RS not just for the identification of phases, but also compositional and structural characterization of scale materials in harvested lead pipes and experimental pipe-loop/recirculation systems. RS is shown to be a sensitive monitor of these characteristics through analyses on cross-sections of lead pipes, raw interior pipe walls, particulates captured in filters, and scrapings from pipes. RS proves to be especially sensitive to the state of crystallinity of scale phases (important to their solubility) and to the specific chemistry of phases precipitated upon the introduction of orthophosphate to the water system. It can be used effectively alone as well as in conjunction with more standard analytical techniques. By means of fiber-optic probes, RS has potential for in situ, real-time analysis within water-filled pipes.


2014 ◽  
Vol 11 (10) ◽  
pp. 14699-14727 ◽  
Author(s):  
A. Alexandre ◽  
I. Basile-Doelsch ◽  
T. Delhaye ◽  
D. Borshneck ◽  
J. C. Mazur ◽  
...  

Abstract. Phytoliths contain occluded organic compounds called phytC. Recently, phytC content, nature, origin, paleoenvironmental meaning and impact in the global C cycle has been the subject of increasing debate. Inconsistencies were fed by the scarcity of in-situ characterization of phytC in phytoliths. Here we reconstructed at high spatial resolution the 3-dimensional (3-D) structure of harvested grass short cell (GSC) phytoliths using 3-D X-ray microscopy. While this technic has been widely used for 3-D reconstruction of biological systems it has never been applied in high resolution mode to silica particles. Simultaneously, we investigated the location of phytC using Nano-scale Secondary Ion Mass Spectrometry (NanoSIMS). Our data evidenced that the silica structure contains micrometric internal cavities. These internal cavities were sometimes observed isolated from the outside. Their opening may be an original feature or may result from a beginning of dissolution of silica during the chemical extraction procedure, mimicking the progressive dissolution process that can happen in natural environments. The phytC that may originally occupy the cavities is thus susceptible to rapid oxidation. It was not detected by the nanoSIMS technique. To the contrary another pool of phytC, continuously distributed in and protected by the silica structure was evidenced. Its N/C ratio (0.27) is in agreement with the presence of amino acids. These findings allowed to discuss discrepancies in phytC quantification, evaluate phytC accessibility to oxidation, and reassess the paleo-environmental meaning of opaque features observed in phytoliths by natural light (NL) microcopy. They also should help to reappraise the significance of phytC in the global C cycle.


2009 ◽  
Vol 81 (1) ◽  
pp. 115-126 ◽  
Author(s):  
Eliane A. Del Lama ◽  
Regina A. Tirello ◽  
Fábio R.D. de Andrade ◽  
Yushiro Kihara

The present research deals with two mural paintings made in 1947 with the fresco technique by Fulvio Pennacchi in the Catholic Chapel of the Hospital das Clínicas (São Paulo City, Brazil), namely the Virgin Annunciation and the Supper at Emmaus. This study regards the materials and painting techniques used by the artist, based on historical research,on in situ observations and laboratory analytical techniques (stereomicroscopy,scanning electron microscopy with an energy dispersive spectrometer, X-ray diffractometry, electron microprobe, images obtained with UV-light), aiming to improve the methods of characterization of objects of our cultural heritage, and to enhance its preservation accordingly. The results lead to the identification of the plaster components and of distinct layers in the frescoes, besides further information on grain size, impurities and textures, composition of pigments, and features of deterioration, such as efflorescences. The degree of degradation of the murals painting was assessed by this way. Our data suggest that a single layer of plaster was used by Pennacchi, as a common mortar with fine- and medium-grained aggregates. Differences in texture were obtained by adding gypsum to the plaster.


Author(s):  
Simon Thomas

Trends in the technology development of very large scale integrated circuits (VLSI) have been in the direction of higher density of components with smaller dimensions. The scaling down of device dimensions has been not only laterally but also in depth. Such efforts in miniaturization bring with them new developments in materials and processing. Successful implementation of these efforts is, to a large extent, dependent on the proper understanding of the material properties, process technologies and reliability issues, through adequate analytical studies. The analytical instrumentation technology has, fortunately, kept pace with the basic requirements of devices with lateral dimensions in the micron/ submicron range and depths of the order of nonometers. Often, newer analytical techniques have emerged or the more conventional techniques have been adapted to meet the more stringent requirements. As such, a variety of analytical techniques are available today to aid an analyst in the efforts of VLSI process evaluation. Generally such analytical efforts are divided into the characterization of materials, evaluation of processing steps and the analysis of failures.


Author(s):  
Julia T. Luck ◽  
C. W. Boggs ◽  
S. J. Pennycook

The use of cross-sectional Transmission Electron Microscopy (TEM) has become invaluable for the characterization of the near-surface regions of semiconductors following ion-implantation and/or transient thermal processing. A fast and reliable technique is required which produces a large thin region while preserving the original sample surface. New analytical techniques, particularly the direct imaging of dopant distributions, also require good thickness uniformity. Two methods of ion milling are commonly used, and are compared below. The older method involves milling with a single gun from each side in turn, whereas a newer method uses two guns to mill from both sides simultaneously.


Author(s):  
J. Liu ◽  
M. Pan ◽  
G. E. Spinnler

Small metal particles have peculiar chemical and physical properties as compared to bulk materials. They are especially important in catalysis since metal particles are common constituents of supported catalysts. The structural characterization of small particles is of primary importance for the understanding of structure-catalytic activity relationships. The shape and size of metal particles larger than approximately 5 nm in diameter can be determined by several imaging techniques. It is difficult, however, to deduce the shape of smaller metal particles. Coherent electron nanodiffraction (CEND) patterns from nano particles contain information about the particle size, shape, structure and defects etc. As part of an on-going program of STEM characterization of supported catalysts we report some preliminary results of CEND study of Ag nano particles, deposited in situ in a UHV STEM instrument, and compare the experimental results with full dynamical simulations in order to extract information about the shape of Ag nano particles.


Reproduction ◽  
2000 ◽  
pp. 325-335 ◽  
Author(s):  
A Calvo ◽  
LM Pastor ◽  
S Bonet ◽  
E Pinart ◽  
M Ventura

Lectin histochemistry was used to perform in situ characterization of the glycoconjugates present in boar testis and epididymis. Thirteen horseradish peroxidase- or digoxigenin-labelled lectins were used in samples obtained from healthy fertile boars. The acrosomes of the spermatids were stained intensely by lectins with affinity for galactose and N-acetyl-galactosamine residues, these being soybean, peanut and Ricinus communis agglutinins. Sertoli cells were stained selectively by Maackia ammurensis agglutinin. The lamina propria of seminiferous tubules showed the most intense staining with fucose-binding lectins. The Golgi area and the apical part of the principal cells of the epididymis were stained intensely with many lectins and their distribution was similar in the three zones of the epididymis. On the basis of lectin affinity, both testis and epididymis appear to have N- and O-linked glycoconjugates. Spermatozoa from different epididymal regions showed different expression of terminal galactose and N-acetyl-galactosamine. Sialic acid (specifically alpha2,3 neuraminic-5 acid) was probably incorporated into spermatozoa along the extratesticular ducts. These findings indicate that the development and maturation of boar spermatozoa are accompanied by changes in glycoconjugates. As some lectins stain cellular or extracellular compartments specifically, these lectins could be useful markers in histopathological evaluation of diseases of boar testis and epididymis.


Sign in / Sign up

Export Citation Format

Share Document