scholarly journals The Effect of Mineral and Organic Fertilization on Common Osier (Salix viminalis L.) Productivity and Qualitative Parameters of Naturally Acidic Retisol

Agriculture ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 42
Author(s):  
Gintaras Šiaudinis ◽  
Danutė Karčauskienė ◽  
Jūratė Aleinikovienė ◽  
Regina Repšienė ◽  
Regina Skuodienė

One of the potential options for sewage sludge as an alternative organic material is the fertilization of energy crops. To evaluate the effect of granulated sewage sludge and mineral fertilization N60P60K60 on common osier’s (Salix viminalis L.) biomass productivity and soil parameters, field trials were held in Western Lithuania’s naturally acidic Retisol (WB 2014; pHKCl 4.35–4.58). After four years of cultivation and dependent on fertilization type, common osier dry matter (DM) yield varied from 49.60 to 77.92 t ha−1. Higher DM yield was related to an increased number of stems/plants. The application of a 90 t ha−1 sewage sludge rate had a significant and positive impact on common osier productivity, as well as on the increment of soil organic carbon, total N, and mobile P2O5 content in the upper 0–30 cm soil layer. The use of both sewage sludge rates (45 and 90 t ha−1) had a similar impact on soil bulk density, water-stable aggregates, and the active soil microbial biomass. Annual mineral fertilization had little effect on the parameters studied. When growing common osier in Retisol, 45 t ha−1 of a single sewage sludge rate was enough to maintain both plant and soil productivity.

Author(s):  
Gintaras ŠIAUDINIS ◽  
Danutė KARČAUSKIENĖ

The long-term field experiment with new high yielding perennial energy crop - cup plant (Silphium perfoliatum L.) was conducted in order to evaluate its biomass productivity in Vėžaičiai branch of the Lithuanian Research Centre for Agricultural and Forestry. Experimental site – naturally acid Bathygleic Dystric Glossic Retisol, pH 4.2-4.4. Granulated sewage sludge was applied (at 45 and 90 t ha-1 rates) as an alternative organic fertilizer. The fertilization was done at the beginning of the experiment, prior to cup plant’s sprouts planting in 2013. Each experimental year, traditional N60P60K60 fertilization was performed in a separate treatment. Cup plant’s biomass was harvesting once per season at the end of vegetation. Cup plant’s dry mass (DM) yield substantially increased from 2.80 t ha-1 (in 2014) to 13.41 t ha-1 (in 2016). The use of sewage sludge fertilization was notably superior to that of mineral fertilization for cup plant’s biomass productivity. In all experimental years, the optimal was the application of 45 t ha-1 rate of sewage sludge - in compare with unfertilized treatment (control), DM yield increased by 66 %, on average. Increasing of sewage sludge rate up to 90 kg ha-1 did not give any DM yield supplement. Energy evaluation of growing technology revealed that the application of 45 t ha-1 sewage sludge rate caused the substantial increase of energy output from 1 ha; and on the contrarily, sharply decreased net energy ratio. In order to determine the long-term effects of fertilization on biomass yield, these studies will continue a few more years.


Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 727
Author(s):  
Ana Simoes-Mota ◽  
Rosa Maria Poch ◽  
Alberto Enrique ◽  
Luis Orcaray ◽  
Iñigo Virto

The aim of this work was to identify the most sensitive soil quality indicators and assess soil quality after long-term application of sewage sludge (SS) and conventional mineral fertilization for rainfed cereal production in a sub-humid Mediterranean calcareous soil. The treatments included six combinations of SS at different doses (40 t ha−1 and 80 ha−1) and frequencies (every 1, 2 and 4 years), plus a control with mineral fertilization, and a baseline control without fertilization. Twenty-five years after the onset of the experiment, 37 pre-selected physical, chemical and biological soil parameters were measured, and a minimum data set was determined. Among these indicators, those significantly affected by treatment and depth were selected as sensitive. A principal component analysis (PCA) was then performed for each studied depth. At 0–15 cm, PCA identified three factors (F1, F2 and F3), and at 15–30 cm, two factors (F4 and F5) that explained 71.5% and 67.4% of the variation, respectively, in the soil parameters. The most sensitive indicators (those with the highest correlation within each factor) were related to nutrients (P and N), organic matter, and trace metals (F1 and F4), microporosity (F2), earthworm activity (F3), and exchangeable cations (F5). Only F3 correlated significantly (and negatively) with yield. From these results, we concluded that soil quality can be affected in opposite directions by SS application, and that a holistic approach is needed to better assess soil functioning under SS fertilization in this type of agrosystem.


Author(s):  
Jūratė ALEINIKOVIENĖ ◽  
Vytautas ŠAUKŠČIUS ◽  
Gintautas ČINGA ◽  
Romutė MIKUČIONIENĖ ◽  
Rimantas VAISVALAVIČIUS,

Productivity of two common osier (Salix viminalis L.) plantations in two different regions of Lithuania was marginally studied in 2014. The regions where the studies on common osier plantations have been done differed in soil groups. For that, the main importance of the study was to identify soil group typological parameters as well as to describe soil chemical characteristics. Further, it was important to estimate the volume of common osier biomass and to assess the impact of different soil parameters on osier biomass productivity. The obtained results let to exclude the importance of soil group as well as of soil typological unit on the productivity of common osier plantations in different regions. Thus, it was found that soil density is the main factor influencing the growth of common osier and it was optimal in studied Histosol (in South West of Lithuania). However, organic carbon and total nitrogen concentrations were the main parameters having impact on common osier productivity in Arenosols (in Western Lithuania).


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 291
Author(s):  
Ramón Bienes ◽  
Maria Jose Marques ◽  
Blanca Sastre ◽  
Andrés García-Díaz ◽  
Iris Esparza ◽  
...  

Long-term field trials are essential for monitoring the effects of sustainable land management strategies for adaptation and mitigation to climate change. The influence of more than thirty years of different management is analyzed on extensive crops under three tillage systems, conventional tillage (CT), minimum tillage (MT), and no-tillage (NT), and with two crop rotations, monoculture winter-wheat (Triticum aestivum L.) and wheat-vetch (Triticum aestivum L.-Vicia sativa L.), widely present in the center of Spain. The soil under NT experienced the largest change in organic carbon (SOC) sequestration, macroaggregate stability, and bulk density. In the MT and NT treatments, SOC content was still increasing after 32 years, being 26.5 and 32.2 Mg ha−1, respectively, compared to 20.8 Mg ha−1 in CT. The SOC stratification (ratio of SOC at the topsoil/SOC at the layer underneath), an indicator of soil conservation, increased with decreasing tillage intensity (2.32, 1.36, and 1.01 for NT, MT, and CT respectively). Tillage intensity affected the majority of soil parameters, except the water stable aggregates, infiltration, and porosity. The NT treatment increased available water, but only in monocropping. More water was retained at the permanent wilting point in NT treatments, which can be a disadvantage in dry periods of these edaphoclimatic conditions.


Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 114
Author(s):  
Katarzyna Pentoś ◽  
Krzysztof Pieczarka ◽  
Kamil Serwata

Soil spatial variability mapping allows the delimitation of the number of soil samples investigated to describe agricultural areas; it is crucial in precision agriculture. Electrical soil parameters are promising factors for the delimitation of management zones. One of the soil parameters that affects yield is soil compaction. The objective of this work was to indicate electrical parameters useful for the delimitation of management zones connected with soil compaction. For this purpose, the measurement of apparent soil electrical conductivity and magnetic susceptibility was conducted at two depths: 0.5 and 1 m. Soil compaction was measured for a soil layer at 0–0.5 m. Relationships between electrical soil parameters and soil compaction were modelled with the use of two types of neural networks—multilayer perceptron (MLP) and radial basis function (RBF). Better prediction quality was observed for RBF models. It can be stated that in the mathematical model, the apparent soil electrical conductivity affects soil compaction significantly more than magnetic susceptibility. However, magnetic susceptibility gives additional information about soil properties, and therefore, both electrical parameters should be used simultaneously for the delimitation of management zones.


FLORESTA ◽  
2019 ◽  
Vol 49 (3) ◽  
pp. 485
Author(s):  
Lívia Mara Lima Goulart ◽  
Marianne Fidalgo de Faria ◽  
Grasiela Spada ◽  
Thiago Tássio de Souza Silva ◽  
Iraê Amaral Guerrini

The use of sewage sludge in agriculture and recovery of degraded areas has been shown as a promising alternative for its final destination. Studies on micronutrient levels after sludge application are necessary to avoid soil contamination at toxic levels. The objective of this work was to verify the micronutrient contents in the soil profile and pH, up to one-meter-deep, nine years after the application of sewage sludge and planting of native species of the Atlantic Forest. The experiment was implemented in a degraded Quartzeneic Neosol and conducted in randomized blocks with four replicates and eight treatments, consisting of six doses of sewage sludge (0, 2.5, 5, 10, 15 and 20 Mg ha-1, with supplementation of potassium due to low concentration in the residue), besides the control treatment, mineral fertilization and only potassium supplementation. After nine years, the contents of all micronutrients evaluated presented a significant response to the application of the treatments, and the application of sewage sludge provided an increase in their contents. Soil pH remained stable at sites receiving mineral fertilization and potassium supplementation. Only manganese and zinc showed mobility in the soil profile. The application of sewage sludge in degraded soil increases the micronutrient content and decreases its movement in the soil profile, and the application of the maximum dose of the residue does not provide toxic levels of these elements in the soil in the long term.


Author(s):  
Ishowriya Yumnam

In this review article the usage of waste sewage sludge and the biomass ash for improving the engineering and non-engineering properties’ of both concrete and soil are discussed in detail. Numerous past research works were studied in detail so as to predict the behavior of biomass ash and waste sewage sludge when used for the stabilization process of soil and concrete. Past studies related to the usage of stabilized sewage sludge and biomass ash were studied in a detailed manner and depending upon the past studies several conclusions has been drawn which are discussed further. Several studies related to the usage of the waste sewage sludge for improving soil physical, chemical and biological properties showed that the usage of waste sewage sludge improve the physical properties, chemical properties, macro-nutriential properties and micro-nutriential properties up to a great extent. Depending upon the results of the past studies it can be concluded that the usage of sewage sludge has positive impact over all the properties of soil and this waste should be utilized in improving the properties of soil rather than dumping. Numerous studies related to the usage of the biomass ash showed that biomass ash has positive impact over both soil as well as concrete. Studies related to the usage of the biomass ash in soil showed that there was a positive response of the stabilized soil after its stabilization with the biomass ash. Studies related to the usage of the biomass ash in concrete showed that the biomass ash can be used up to 10 percent replacement of the ordinary Portland cement so as to attain maximum strength results from it.


2021 ◽  
Author(s):  
Xue Li ◽  
Qiuxiang Wen ◽  
Shiyu Zhang ◽  
Na Li ◽  
Jinfeng Yang ◽  
...  

Abstract Aims The objectives of this study were to examine the long-term substitution of mineral phosphorus (P) fertilizers with manure (M) plus nitrogen (N) fertilizers and how they affect the forms of P that occur in soil, soil P distribution, and plant growth.Methods We used a solution of 31P nuclear magnetic resonance (31P-NMR) spectroscopy to study the correlations between long-term fertilization regimes and the forms of P that occur at different soil depths. Then we investigated yield, plant growth, and soil properties.Results A 40-year field experiment showed that the use of M + N fertilizers can significantly improve plant growth and yield. The proportion of organic P in the 20-40 cm soil layer was significantly increased by long-term M fertilization. The concentrations of various forms of P (orthophosphate, pyrophosphate, diesters, monoesters, and total inositol hexakisphosphate, IHP) in topsoil increased significantly with the combination of M with N + P mineral fertilization. The addition of M greatly increased the stereoisomers of IHP (myo-IHP, scyllo-IHP, neo-IHP, and D-chiro-IHP) and the proportion and concentration of corrected diesters. There were no significant differences in the pyrophosphate contents of the 40-60 cm soil layer according to fertilization type and year of fertilization. There were also no significant differences in IHP stereoisomers and diesters according to fertilization year. The P forms that contributed to corn yield were orthophosphate, diester, and IHP. Further, pyrophosphate made no significant contribution to corn growth. Conclusions Over the long-term, pig manure can significantly increase the amount of orthophosphate that is directly absorbed by crops and the amount of IHP stereoisomers that can be used by plants. Orthophosphate and IHP are the two key factors that have a positive effect on plant growth.


2017 ◽  
Vol 10 (1) ◽  
pp. 325
Author(s):  
Hebert D. A. Abobi ◽  
Armand W. Koné ◽  
Bernard Y. Koffi ◽  
Saint Salomon F. Diahuissié ◽  
Stanislas K. Loukou ◽  
...  

Poultry litter is increasingly used as organic amendment in market gardening in Côte d’Ivoire. To know about the sustainability of this practice, its impacts on soil quality should be known. This study aimed at assessing the effect on soil fertility of composted poultry litter addition for 16 years following two distinct ways, and identifying soil parameters driving cucumber yield. Trials were laid out in a Fisher randomized block design with 3 treatments replicated 5 times each: Control (C), Surface-applied compost (SAC) and Buried compost (BC). Soil (0-20 cm) chemical characteristics and cucumber growth and yield parameters were measured. Values of all parameters were higher with compost addition compared to the control, except for the C:N ratio. SAC and BC showed similar values of organic C, total N, CEC, pH and available phosphorus. However, Ca2+, Mg2+, K+ and base saturation were higher in SAC than in BC. Relative to values in the control, the greatest changes in soil parameters were observed with exchangeable cations, followed by soil organic matter. Soil organic C and total N concentrations have doubled in SAC while Ca2+, Mg2+, and K+ increased at greater rate (702.4, 400.9 and 186.67% respectively). Also, cucumber growth parameters were the highest with compost addition compared to the control. Significant effect of the compost application way on cucumber was also observed: collar diameter, leaf area and fresh fruit yield in SAC (0.72±0.02 cm, 258.9±12.3 cm2, 11.1±1.3 t ha-1, respectively) were higher than in BC (0.56±0.01 cm, 230.2±2.5 cm2, 5.4±0.5 t ha-1 respectively). Fruit yields in SAC and BC were four times and twice higher than in the control (2.6±0.3 t ha-1), respectively. Cucumber growth parameters were determined by soil concentration in Mg2+ while yield was determined by Ca2+. Composted poultry litter should be promoted for a sustainable soil fertility management in vegetable farming systems.


2017 ◽  
Vol 24 (11) ◽  
pp. 1461-1468 ◽  
Author(s):  
Dayo Afolabi ◽  
Christo Albor ◽  
Lukasz Zalewski ◽  
Dan R Altmann ◽  
David Baker ◽  
...  

Background: A number of elements of the pivotal ‘cladribine tablets treating multiple sclerosis orally’ (CLARITY) trial have remained unpublished. Objective: To report the impact of cladribine on health-related quality of life (QoL) in people with relapsing multiple sclerosis (pwRMS). Methods: QoL data from the phase III trial of two different doses (3.5 and 5.25 mg/kg) of oral cladribine in pwRMS were acquired from the European Medicines Agency through Freedom of Information. Spearman’s rank correlation was used to analyse the relationship between baseline QoL scores and baseline Expanded Disability Status Scale (EDSS) scores. Responses of the Euro Quality of Life 5 Dimensions (EQ-5D) and Multiple Sclerosis Quality of Life-54 (MSQOL-54) questionnaires were compared between treatment and control groups using univariate analyses of covariance. Results: In total, n = 5148 EQ-5D responses and n = 894 MSQOL-54 physical, mental health and dimension scores were extracted. Baseline EQ-5D indices correlated with EDSS scores. After 2 years, pwRMS taking 3.5 ( p = .001) and 5.25 mg/kg ( p = .022) reported significantly improved EQ-5D index scores compared with placebo. Positive, yet non-significant, differences were detected in MSQOL-54 scores between cladribine and placebo. Conclusion: Analysis of the CLARITY dataset suggests that, over and above its established clinical efficacy, cladribine leads to improved QoL over 96 weeks. ClinicalTrials.gov identifier: NCT00213135.


Sign in / Sign up

Export Citation Format

Share Document