scholarly journals Impact of Cellulase and Lactic Acid Bacteria Inoculant to Modify Ensiling Characteristics and In Vitro Digestibility of Sweet Corn Stover and Cassava Pulp Silage

Agriculture ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 66
Author(s):  
Chatchai Kaewpila ◽  
Suwit Thip-uten ◽  
Anusorn Cherdthong ◽  
Waroon Khota

Improving the productive performance of agricultural residue silage has practical relevance to sustaining livestock production. Sweet corn stover (SCS) and cassava pulp (CSVP) are widespread in the tropics as low-cost feed resources. To efficiently prepare SCS and CSVP silage, the impact of adding Acremonium cellulase (AC), Lactobacillus casei strain TH14 inoculant (TH14), and their combination (AC+TH14) on ensiling characteristics, microbial population, chemical compositions, and in vitro digestibility were tested in comparison to control (no additive). After 60 d of ensiling, the pH value and ammonia nitrogen content of silage were lower (p < 0.05) when AC was used as the additive. Compared with other treatments, TH14 provided abundant lactic acid fermentation in silage. All tested additives increased the crude protein (CP) content and decreased the neutral detergent fiber (NDF) content of SCS silage. In CSVP silage, only AC and AC+TH14 altered the CP and NDF content. In addition, AC and AC+TH14 provided greater in vitro dry matter digestibility and a lower in vitro fiber digestibility. Overall, optimized either AC or TH14 can be recommended as an attractive additive to improve the ensiling characteristics of SCS and CSVP silage. AC significantly modifies the in vitro digestibility of silage.

2019 ◽  
Vol 49 (7) ◽  
Author(s):  
Zhihao Dong ◽  
Junfeng Li ◽  
Lei Chen ◽  
Siran Wang ◽  
Tao Shao

ABSTRACT: This study was conducted to evaluate the effects of additives on the fermentation characteristics, chemical composition and in vitro digestibility of tetraploid black locust (TBL). The TBL leaves silage was either untreated (control) or treated with 1 × 106 cfu/g FM Lactobacillus plantarum (L), 1% glucose (G), 3% molasses (M), a combination of 1% glucose and Lactobacillus plantarum (L+G), or a combination of 3% molasses and Lactobacillus plantarum (L+M). Fermentation quality, chemical composition and nutrient digestibility were then analyzed. Ethanol and acetic acid concentrations were the dominant fermentation products in all silages except L+M silage. The L, G and L+G treatments failed to influence the fermentation. The M treatment increased (P<0.05) the lactic acid concentration and lowered (P<0.05) the pH when compared with control silage. The best fermentation properties were observed in L+M silage, as indicated by the dominance of lactic acid over ethanol in fermentation products. The M and L+M silages exhibited higher (P<0.05) dry matter, and M silage showed higher residual water-soluble carbohydrates than the control. Ensiling increased (P<0.05) the in vitro dry matter, neutral detergent fiber and acid detergent fiber degradability of TBL. Among the silages, M silage had the highest levels of dry matter, neutral detergent fiber and acid detergent fiber degradability. The obtained results suggested that application of lactic acid bacteria together with 3% molasses could be an effective strategy to prevent the occurrence of ethanol fermentation and improve fermentation quality of TBL silage; addition of fermentable sugars to TBL improves nutrient availability to ruminants.


Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 196
Author(s):  
Gamonmas Dagaew ◽  
Anusorn Cherdthong ◽  
Sawitree Wongtangtintharn ◽  
Metha Wanapat ◽  
Chanon Suntara

Cassava pulp (CS) is high in fiber and low in protein; hence, improving the nutritive value of CS is required to increase its contribution to enhancing ruminant production. The present work hypothesized that CS quality could be enhanced by fermentation with yeast waste (YW), which can be used to replace soybean meal (SBM), as well as lead to improved feed utilization in ruminants. Thus, evaluation of in vitro ruminal fermentation and feed digestibility, as influenced by YW-treated CS and different roughage (R) to concentrate (C) ratios, was elucidated. The design of the experiment was a 5 × 3 factorial arrangement in a completely randomized design. Each treatment contained three replications and three runs. The first factor was replacing SBM with CS fermented with YW (CSYW) in a concentrate ratio at 100:0, 75:25, 50:50, 25:75, and 0:100, respectively. The second factor was R:C ratios at 70:30, 50:50, and 30:70. The level of CSYW showed significantly higher (p < 0.01) gas production from the insoluble fraction (b), potential extent of gas production (a + b), and cumulative gas production at 96 h than the control group (p < 0.05). There were no interactions among the CSYW and R:C ratio on the in vitro digestibility (p > 0.05). Furthermore, increasing the amount of CSYW to replace SBM up to 75% had no negative effect on in vitro neutral detergent fiber degradability (IVNDFD) (p > 0.05) while replacing CSWY at 100% could reduce IVNDFD (p > 0.05). The bacterial population in the rumen was reduced by 25.05% when CSYW completely replaced SBM (p < 0.05); however, 75% of CSWY in the diet did not change the bacterial population (p > 0.05). The concentration of propionate (C3) decreased upon an increase in the CSYW level, which was lowest with the replacement of SBM by CSYW up to 75%. However, various R:C ratios did not influence total volatile fatty acids (VFAs), and the proportion of VFAs (p > 0.05), except the concentration of C3, increased when the proportion of a concentrate diet increased (p < 0.05). In conclusion, CSYW could be utilized as a partial replacement for SBM in concentrate diets up to 75% without affecting gas kinetics, ruminal parameters, or in vitro digestibility.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 444-444
Author(s):  
Paulina Luna Moreno ◽  
Hermilo Leal-Lara ◽  
Águeda García-Pérez ◽  
Luis Corona ◽  
Atmir Romero-Pérez ◽  
...  

Abstract Agricultural by-products such as corn stover (CS) are abundantly available in many countries; however, its high content of neutral detergent fiber (NDF) and lignin (L) and low protein content, causes low digestibility and nutrient availability for ruminants. The production of edible fungi could improve the digestibility of the CS because fungi can break down the cross-links between cell wall components. The aim of the study was to evaluate the effect of the invaded CS-based substrate used in the production of 21 white rot fungi of the species: Auricularia sp (Auri), Ganoderma sp (Gano), Hericium sp (Heri), Lentinula edodes (LC, L5, L9, L15, L21), Pleurotus eryngii (Pe-PQ, Pe-MB), Pleurotus djamour (Pd-Pro, Pd-UTMR) and Pleurotus ostreatus (Po-IAP, Po-Psma, Po-P14, Po-POS, Po-IE202, Po-JP, Po-P35, Po-P38, Po-Sfco) on crude protein (CP), NDF and L content and in vitro dry matter digestibility (IVDMD). The variables were analyzed in a completely randomized design with the MIXED procedure of SAS and the comparison of the means was made with the Tukey analysis. For CP, a significant increase (P &lt; 0.05) was observed from 10% (Pe-MB) to 41% (LC) in comparison with the substrate without inoculation (C). There was a decrease (P &lt; 0.05) of NDF from 2% (LC) to 10% (Pd-PRO) against C. Fungal treated CS had no effect on L (P &lt; 0.05) as compared to C. Treatments increased (P &lt; 0.05) IVDMD from 3% (L15) up to 36% (Po-POS) for all fungal strains, except for Pe-PQ and Po-Sfco in comparison with C. There was a positive correlation (r2=0.21, P &lt; 0.05) between CP and IVDMD. An equation was obtained to predict IVDMD [IVDMD=0.40578 + 358.38(%ADF)–358.02(%NDF)+358.17(%HEM)–0.3211(%DM), R2=0.32 (P &lt; 0.05)]. In conclusion the mycelial invasion of white rot fungi on a CS-based substrate, increased CP content, decreased NDF and improved IVDMD, making it a viable option to increase the digestibility of CS.


2010 ◽  
Vol 39 (7) ◽  
pp. 1398-1408 ◽  
Author(s):  
Jucilene Cavali ◽  
Odilon Gomes Pereira ◽  
Sebastião de Campos Valadares Filho ◽  
Edson Mauro Santos ◽  
Gleidson Giordano Pinto de Carvalho ◽  
...  

It was evaluated the addition of calcium oxide (0; 0.5; 1.0; 1.5; and 2.0% of dry matter) effect on the chemical composition and ruminal degradability of the dry matter and neutral detergent fiber, on the losses of dry matter, and on the microbial population in sugar cane silages. A design with five levels of calcium oxide and three replications was used. All the variables were influenced by the addition of calcium oxide in the silages, except the composition in acid detergent insoluble protein, water soluble carbohydrates and lignin. The dry matter content and pH linearly increased while the contents of organic matter, hemicellulose and crude protein linearly decreased with the levels of calcium oxide. Neutral detergent fiber corrected for ashes and protein and acid detergent fiber were adjusted for the quadratic models with calculated minimal values of 33.3 and 22.5% for the levels 1.73 and 1.49% of calcium oxide, respectively. The in vitro digestibility of the dry matter and the content of amoniacal nitrogen adjusted to quadratic models with maximal levels of 80.1% and 9.1% for the levels of 1.8 and 0.7% of calcium oxide, respectively. The minimal production of gas (3.18%) was observed at the level of 1.39% of calcium oxide. Production of effluent and recovery of dry matter of the ensiled mass showed a reduction and a linear increase, respectively, with addition of calcium oxide. The highest lactic acid bacterial population was observed in the silage treated with 1.5% of calcium oxide. The addition of calcium oxide increased degradability of the soluble fraction of the dry matter, which was higher than 50% and reduced the non- degradable fraction of the neutral detergent fiber. Addition of calcium oxide level higher than 1.0% in the sugar cane during ensilage improves in vitro dry matter digestibility and the recovery of dry matter, increases populations of lactic acid bacteria and reduces production of yeasts.


2019 ◽  
Vol 40 (2) ◽  
pp. 831 ◽  
Author(s):  
Luiz Juliano Valério Geron ◽  
Luiz Eduardo Cantão Veloso ◽  
Sílvia Cristina de Aguiar ◽  
Alexandre Lima de Souza ◽  
Ilda dos Santos Souza ◽  
...  

The effect of inclusion of Morinda citrifolia L. (Noni) in standardized diets of sheep on in vitro digestibility and parameters fermentation was examined using two different inoculums (ruminal liquid and sheep feces). To determine the nutrients’ in vitro digestibility coefficient (IVDC), two sheep were used as inoculum donors. The experimental design was factorial (4 × 2), with four diets containing different proportions of Noni and two types of inoculum. The different dietary proportions of Noni (0%, 8%, 16%, and 24%) did not affect the IVDC of dry matter (DM), organic matter (OM) and crude protein (CP) for both inoculums. The IVDC of neutral detergent fiber (NDF) differed significantly between the inoculums. After in vitro incubation for 24 h, the pH value of the fermented material differed between the different diets and between the inoculums. Moreover, the concentration of ammoniacal nitrogen was affected by the proportion of Noni and differed between the inoculums after incubation for 24 h. The inclusion of up to 24% of Noni in standardized rations for ruminants did not affect the IVDC of DM, OM, CP, and NDF. The use of feces as inoculum for in vitro fermentation produced lower IVDC values than those by ruminal liquid. The diet containing 8% of Noni and fermented with ruminal liquid produced higher pH values after 24 h of incubation. Taken together, the different dietary Noni proportions and the different inoculums can alter the concentration of ammoniacal nitrogen of sheep diets after 24 h in vitro fermentation; however, they seem not to affect the IVDC of the nutrients.


2012 ◽  
Vol 28 (3) ◽  
pp. 603-611 ◽  
Author(s):  
A. Akinfemi

Solid fermentation using celllolytic fungi: Pleurotus sajor-caju and Pleurotus florida for upgrading of sugarcane bagasse to value-added ruminant feed were investigated. The fermentation of the substrate lasted for 21 days after which the changes in the chemical and mineral composition, and the in vitro gas production were evaluated. The results obtained showed an increase in the crude protein (%) from 6.43 (control) to 9.82 for Pleurotus sajor treated substrate (PSB) and 10.05 for Pleurotus florida treated substrate (PFB). The treatment effect on crude fiber, neutral detergent fiber (NDF), acid detergent fiber (ADF) and acid detergent lignin (ADL) was significant. Fungal treatment decreased crude fiber (%) from 37.49 (control) to 31.67 (PFB), NDF (%) from 65.92 (control) to 53.34 (PSB), ADF (%) from 49.94 to 34.79 (PSB), and ADL (%) from 15.13 to 9.74 (PSB). Most of the major and trace minerals were higher in the untreated bagasse with the exception of phosphorus (0.15g/kg), magnesium (1.80g/kg), potassium (2.70g/kg) and zinc (21.60g/kg). The degradation of the insoluble but degradable fraction (b, ml) was higher in the control (19.00) followed by PSB (16.00). The estimated organic matter digestibility (%), short chain fatty acid (?, mol) and metabolisable energy (MJ/Kg DM) increased from 38.77-50.06, 0.56-0.75 and 5.33-6.80 respectively. The gas volumes at 24h, 48h and 72h as affected by treatment was significant (P<0.05) with more volumes of gas produced in the treated bagasse. The result obtained in this study showed that fungal treatment of bagasse improved the nutrient contents and digestibility.


Animals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1854
Author(s):  
Yulin Ma ◽  
Xu Chen ◽  
Muhammad Zahoor Khan ◽  
Jianxin Xiao ◽  
Shuai Liu ◽  
...  

The current study was conducted to explore the ammoniation treatment effects on the chemical composition and in vitro digestibility of rice straw in Chinese Holsteins. For this purpose, rice straw was stored in polyethylene bags (35 × 25 cm, 350 g per bag) including (i) no additives (RS); (ii) 5% urea (5U, dry matter (DM) basis); (iii) 9% corn steep liquor + 5% urea (9C5U, DM basis); (iv) 9C2.5U; and (v) 9C2.5U + 3% molasses (9C2.5U3M, DM basis). The air-dry matter of the mixture was kept at the same level at 55% for all treatments. Fifteen bags (5 treatments × 3 repeats) were prepared and stored at ambient temperature (25 ± 3 °C). The chemical composition and in vitro digestibility were measured at day 60 after storage. Our analysis revealed that all the four ammoniation treatments improved the in vitro DM and neutral detergent fiber (IVNDFD) digestibility. In addition, all the four ammoniation treatments significantly (P < 0.001) increased the levels of crude protein (CP), gas production (GP), acetic acid (AA), butyric acid (BA) and total volatile fatty acid (TVFA) contents of the rice straw and decreased the neutral detergent fiber (NDF) and acid detergent fiber (ADF) of the rice straw compared to the control. Within four treated groups, the 9C5U treatment was most effective. Finally, we concluded that ammoniation treatments increased the nutritive value of rice straw. In addition the 9C5U treatment could be an effective ammoniation treatment for the better utilization of rice straw.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wuyang Huang ◽  
Ky Young Cho ◽  
Di Meng ◽  
W. Allan Walker

AbstractAn excessive intestinal inflammatory response may have a role in the pathogenesis of necrotizing enterocolitis (NEC) in very preterm infants. Indole-3-lactic acid (ILA) of breastmilk tryptophan was identified as the anti-inflammatory metabolite involved in probiotic conditioned media from Bifidobacteria longum subsp infantis. This study aimed to explore the molecular endocytic pathways involved in the protective ILA effect against inflammation. H4 cells, Caco-2 cells, C57BL/6 pup and adult mice were used to compare the anti-inflammatory mechanisms between immature and mature enterocytes in vitro and in vivo. The results show that ILA has pleiotropic protective effects on immature enterocytes including anti-inflammatory, anti-viral, and developmental regulatory potentials in a region-dependent and an age-dependent manner. Quantitative transcriptomic analysis revealed a new mechanistic model in which STAT1 pathways play an important role in IL-1β-induced inflammation and ILA has a regulatory effect on STAT1 pathways. These studies were validated by real-time RT-qPCR and STAT1 inhibitor experiments. Different protective reactions of ILA between immature and mature enterocytes indicated that ILA’s effects are developmentally regulated. These findings may be helpful in preventing NEC for premature infants.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1368
Author(s):  
Marbie Alpos ◽  
Sze Ying Leong ◽  
Indrawati Oey

Legumes are typically soaked overnight to reduce antinutrients and then cooked prior to consumption. However, thermal processing can cause over-softening of legumes. This study aimed to determine the effect of calcium addition (0, 100, 300, and 500 ppm in the form of calcium chloride, CaCl2), starting from the overnight soaking step, in reducing the loss of firmness of black beans during thermal processing for up to 2 h. The impact of calcium addition on the in vitro starch and protein digestibility of cooked beans was also assessed. Two strategies of calcium addition were employed in this study: (Strategy 1/S1) beans were soaked and then cooked in the same CaCl2 solution, or (Strategy 2/S2) cooked in a freshly prepared CaCl2 solution after the calcium-containing soaking medium was discarded. Despite the texture degradation of black beans brought about by increasing the cooking time, texture profile analysis (TPA) revealed that their hardness, cohesiveness, springiness, chewiness, and resilience improved significantly (p < 0.05) with increasing calcium concentration. Interestingly, beans cooked for 2 h with 300 ppm CaCl2 shared similar hardness with beans cooked for 1 h without calcium addition. Starch and protein digestibility of calcium-treated beans generally improved with prolonged cooking. However, calcium-treated beans cooked for 1 h under S2 achieved a reduced texture loss and a lower starch digestibility than those beans treated in S1. A lower starch digestion could be desired as this reflects a slow rise in blood glucose levels. Findings from this result also showed that treating black beans with high level of CaCl2 (i.e., 500 ppm) was not necessary, otherwise this would limit protein digestibility of cooked black beans.


Sign in / Sign up

Export Citation Format

Share Document