scholarly journals An Alternative to Field Retting: Fibrous Materials Based on Wet Preserved Hemp for the Manufacture of Composites

Agriculture ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 140 ◽  
Author(s):  
Hans-Jörg Gusovius ◽  
Carsten Lühr ◽  
Thomas Hoffmann ◽  
Ralf Pecenka ◽  
Christine Idler

A process developed at the Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB) for the supply and processing of wet-preserved fiber plants opens up new potential uses for such resources. The processing of industrial hemp into fiber materials and products thereof is undergoing experimental research along the value-added chain from the growing process through to the manufacturing of product samples. The process comprises the direct harvesting of the field-fresh hemp and the subsequent anaerobic storage of the entire plant material. Thus, process risk due to unfavorable weather conditions is prevented in contrast to common dew retting procedures. The effects of the anaerobic storage processes on the properties of the bast part of the plant material are comparable to the results of common retting procedures. Harvest storage, as well as further mechanical processing, leads to different geometrical properties compared to the bast fibers resulting from traditional post harvesting treatment and decortication. The fiber raw material obtained in this way is well suited to the production of fiberboards and the reinforcement of polymer or mineral bonded composites. The objective of this paper is to present recent research results on final products extended by a comprehensive overview of the whole supply chain in order to enable further understanding of the result influencing aspects of prior process steps.

2020 ◽  
Vol 27 (2) ◽  
pp. 295-303
Author(s):  
Adam Radkowski ◽  
Iwona Radkowska ◽  
Jan Bocianowski

AbstractWeather conditions prevailing in Poland often cause that meadow sward designated for silage is harvested too late, which decreases the quality of prepared silage. The aim of the research was to assess the quality of silages from dried meadow sward. The silages were ensiled in large cylindrical bales in selected individual farms specializing in milk production. The farms where the research was carried out were located in three voivodeships: slaskie, malopolskie and podkarpackie. In the prepared plant material, the basic chemical composition was determined using the method. When comparing the mean values, it was established that silages from the investigated region had a favourable content of total protein, the highest concentration was recorded for silages from Slask, followed by Malopolska and Podkarpacie. A slightly elevated concentration of crude fibre, fraction of acid detergent fibre (ADF) and neutral detergent fibre (NDF), was recorded. This fact shows that farmers collect raw material, particularly from the first cut, too late. Nutrient value of silages from meadow sward decreases with progressing vegetation. Higher protein and energy losses during sward ensiling were also observed at considerable drying of the plant material. In most cases, silages from the studied farms had a low content of monosaccharides. The carried out chemical analyses showed that in overall assessment the studied silages are of good quality; silages prepared from meadow sward from the third cut had the highest value. Proper technology of preservation of meadow sward is one of important factors in the production of feed for ruminants.


2019 ◽  
Vol 16 (3) ◽  
pp. 334-351
Author(s):  
A. S. Mavlyanov ◽  
E. K. Sardarbekova

Introduction. The objective of the research is to study the effect of the complex activation of the alumina raw material on the rheological properties of the ceramic mass. In addition, the authors investigate solutions for the application of optimal coagulation structures based on loams and ash together with plastic certificates.Materials and methods. The authors used the local forest like reserves of clay loams at the BashKarasu, ash fields of the Bishkek Central Heating Centre (BTEC) and plasticizer (sodium naphthenate obtained from alkaline chemical production wastes) as fibrous materials. Moreover, the authors defined technological properties of raw materials within standard laboratory methodology in accordance with current GOSTs.Results. The researchers tested plastic durability on variously prepared masses for the choice of optimal structures. The paper demonstrated the plastic durability of complexly activated compounds comparing with non-activated and mechanically activated compounds. The sensitivity coefficient increased the amount of clay loams by mechanically and complexly activated, which predetermined the possibility of intensifying the process of drying samples based on complexly activated masses.Discussion and conclusions. However, mechanical activation of clay material reduces the period of relaxation and increases the elasticity coefficient of ceramic masses by 1.8–3.4 times, meanwhile decreases elasticity, viscosity and the conventional power during molding, which generally worsens the molding properties of the masses. Сomplex activation of ash-clay material decreases the period of relaxation and provides an increase in elasticity, plasticity of ceramic masses by 46–47%, reduction in viscosity by 1.5–2 times, conventional power on molding by 37–122% in comparison with MA clay loams. Ceramic masses based on spacecraft alumina raw materials belong to the SMT with improved rheological properties; products based on them pass through the mouthpiece for 5–7 seconds.


2020 ◽  
Vol 9 (1) ◽  
pp. 55
Author(s):  
María Florencia Eberhardt ◽  
José Matías Irazoqui ◽  
Ariel Fernando Amadio

Stabilization ponds are a common treatment technology for wastewater generated by dairy industries. Large proportions of cheese whey are thrown into these ponds, creating an environmental problem because of the large volume produced and the high biological and chemical oxygen demands. Due to its composition, mainly lactose and proteins, it can be considered as a raw material for value-added products, through physicochemical or enzymatic treatments. β-Galactosidases (EC 3.2.1.23) are lactose modifying enzymes that can transform lactose in free monomers, glucose and galactose, or galactooligosacharides. Here, the identification of novel genes encoding β-galactosidases, identified via whole-genome shotgun sequencing of the metagenome of dairy industries stabilization ponds is reported. The genes were selected based on the conservation of catalytic domains, comparing against the CAZy database, and focusing on families with β-galactosidases activity (GH1, GH2 and GH42). A total of 394 candidate genes were found, all belonging to bacterial species. From these candidates, 12 were selected to be cloned and expressed. A total of six enzymes were expressed, and five cleaved efficiently ortho-nitrophenyl-β-galactoside and lactose. The activity levels of one of these novel β-galactosidase was higher than other enzymes reported from functional metagenomics screening and higher than the only enzyme reported from sequence-based metagenomics. A group of novel mesophilic β-galactosidases from diary stabilization ponds’ metagenomes was successfully identified, cloned and expressed. These novel enzymes provide alternatives for the production of value-added products from dairy industries’ by-products.


PeerJ ◽  
2019 ◽  
Vol 6 ◽  
pp. e6186 ◽  
Author(s):  
Ting-Ting Jiang ◽  
Yan Liang ◽  
Xiang Zhou ◽  
Zi-Wei Shi ◽  
Zhi-Jun Xin

Background Sweet sorghum bagasse (SSB), comprising both a dermal layer and pith, is a solid waste generated by agricultural activities. Open burning was previously used to treat agricultural solid waste but is harmful to the environment and human health. Recent reports showed that certain techniques can convert this agricultural waste into valuable products. While SSB has been considered an attractive raw material for sugar extraction and the production of value-added products, the pith root in the SSB can be difficult to process. Therefore, it is necessary to pretreat bagasse before conventional hydrolysis. Methods A thorough analysis and comparison of various pretreatment methods were conducted based on physicochemical and microscopic approaches. The responses of agricultural SSB stem pith with different particle sizes to pretreatment temperature, acid and alkali concentration and enzyme dosage were investigated to determine the optimal pretreatment. The integrated methods are beneficial to the utilization of carbohydrate-based and unknown compounds in agricultural solid waste. Results Acid (1.5−4.5%, v/v) and alkali (5−8%, w/v) reagents were used to collect cellulose from different meshes of pith at 25–100 °C. The results showed that the use of 100 mesh pith soaked in 8% (w/v) NaOH solution at 100 °C resulted in 32.47% ± 0.01% solid recovery. Follow-up fermentation with 3% (v/v) acid and 6.5% (w/v) alkali at 50 °C for enzymolysis was performed with the optimal enzyme ratio. An analysis of the surface topography and porosity before and after pretreatment showed that both the pore size of the pith and the amount of exposed cellulose increased as the mesh size increased. Interestingly, various compounds, including 42 compounds previously known to be present and 13 compounds not previously known to be present, were detected in the pretreatment liquid, while 10 types of monosaccharides, including D-glucose, D-xylose and D-arabinose, were found in the enzymatic solution. The total monosaccharide content of the pith was 149.48 ± 0.3 mg/g dry matter. Discussion An integrated technique for obtaining value-added products from sweet sorghum pith is presented in this work. Based on this technique, lignin and hemicellulose were effectively broken down, amorphous cellulose was obtained and all sugars in the sweet sorghum pith were hydrolysed into monosaccharides. A total of 42 compounds previously found in these materials, including alcohol, ester, acid, alkene, aldehyde ketone, alkene, phenolic and benzene ring compounds, were detected in the pretreatment pith. In addition, several compounds that had not been previously observed in these materials were found in the pretreatment solution. These findings will improve the transformation of lignocellulosic biomass into sugar to create a high-value-added coproduct during the integrated process and to maximize the potential utilization of agricultural waste in current biorefinery processing.


Author(s):  
Sebastian Ponce ◽  
Stefanie Wesinger ◽  
Daniela Ona ◽  
Daniela Almeida Streitwieser ◽  
Jakob Albert

AbstractThe selective oxidative conversion of seven representative fully characterized biomasses recovered as secondary feedstocks from the agroindustry is reported. The reaction system, known as the “OxFA process,” involves a homogeneous polyoxometalate catalyst (H8PV5Mo7O40), gaseous oxygen, p-toluene sulfonic acid, and water as solvent. It took place at 20 bar and 90 °C and transformed agro-industrial wastes, such as coffee husks, cocoa husks, palm rachis, fiber and nuts, sugarcane bagasse, and rice husks into biogenic formic acid, acetic acid, and CO2 as sole products. Even though all samples were transformed; remarkably, the reaction obtains up to 64, and 55% combined yield of formic and acetic acid for coffee and cocoa husks as raw material within 24 h, respectively. In addition to the role of the catalysts and additive for promoting the reaction, the influence of biomass components (hemicellulose, cellulose and lignin) into biogenic formic acid formation has been also demonstrated. Thus, these results are of major interest for the application of novel oxidation techniques under real recovered biomass for producing value-added products. Graphical abstract


Author(s):  
Ljudmila Romaniuk ◽  

International economic activity occupies a special place in a complex system of the global economic relations. It reflects the mutual economic dependence of trade and economic activities of different countries of the world. The significance of the development of international economic performance of each country is growing. The purpose of the article is to determine the current state and trends of international economic performance of Ukraine, taking into account changes in the external environment. SWOT-analysis was introduced to identify strengths, weaknesses, opportunities, threats and ways to overcome weaknesses, solve problems in international economic activity, use strengths and opportunities. International economic activity is a powerful factor in the development of the country's economy and has a significant potential in regard of natural, economic and human resources, but the study has also revealed problems and negative trends. To identify trends in the effectiveness of the country's international economic activity, export-import performance indicators for 2019, 2020 and similar indicators for 2013 were analyzed. In 2020 a decline in exports in the machine-building industry is observed. Furthermore, the exports are dominated by the raw material component. The growth rate of exported goods refers to industries with a small share of value added. At the same time, imports are dominated by high-tech products, indicating a lack of strategy of technical and technological development, which leads to the deindustrialization of the country, which is a significant threat to the economy of Ukraine as a whole and its international economic activity. In the context of economic globalization, the importance of international economic relations is growing. To increase the efficiency of international economic performance it is crucial to address a number of domestic issues: stabilization of political situation, termination of military actions in the east of the country, overcoming corruption, ensuring technical and technological development, implementation of innovations at enterprises, development and implementation of multi-vector strategy, implementation of the strategy of public diplomacy in order to build a positive image of Ukraine. Further research will focus on assessing the effectiveness of international economic activity, identifying threats to national competitiveness and elaborating recommendations for overcoming them.


2021 ◽  
Vol 59 (2) ◽  
Author(s):  
Elizabeta Zandona ◽  
Marijana Blažić ◽  
Anet Režek Jambrak

The dairy industry produces large amounts of whey as a by- product or co-product, which has led to considerable environmental problems due to its high organic matter content. Over the past decades, possibilities of more environmentally and economically efficient whey utilisation have been studied, primarily to convert unwanted end products into a valuable raw material. Sustainable whey management is mostly oriented to biotechnological and food applications for the development of value-added products such as whey powders, whey proteins, functional food and beverages, edible films and coatings, lactic acid and other biochemicals, bioplastic, biofuels and similar valuable bioproducts. This paper provides an overview of the sustainable utilization of whey and its constituents, considering new refining approaches and integrated processes to covert whey, or lactose and whey proteins to high value-added whey-based products.


2021 ◽  
Vol 20 (10) ◽  
pp. 103-116
Author(s):  
Natalya S. Epifanova ◽  
Vladimir N. Akulinin

The purpose of this article is to study border trade in the regions of Russia and the provinces of China. It is shown that in recent years there have been negative trends in border trade, leading to its reduction. Therefore, Russian regions bordering with China should transform into separate objects of regional policy, while also forming a legislative framework for border interaction in all its main spheres: trade, humanitarian cooperation, science and education, and others. In border cooperation with China, special emphasis should be placed on cooperation in the innovation sphere, as well as on improving the quality of exported goods and services and promoting infrastructure projects. Border trade between the regions of Russia and China is built mainly on trade and export of labour resources from China to Russia, as well as China’s receipt of additional sales channels for the confidently growing sales markets for consumer goods and sources of raw materials and primary products. The interaction of Russian regions with neighbouring provinces on the border with China not only preserves the raw material orientation of these regions, but also hinders the development and strengthening of the manufacturing industry in the structure of their regional economies, since border interaction for Russian regions immobilizes those stages of value-added production observed in the very first stages. In general, for the Chinese provinces there is a similar problem associated with such exports to border regions that have common borders with Russia, which does not contribute to the diversification and structural development of the regional economies of the Chinese provinces. That is why building an effective mechanism for border interaction between Russia and China is a strategically important issue for both countries.


2021 ◽  
pp. 227-237
Author(s):  
Yu. Вerezovsky ◽  
T. Kuzmina ◽  
M. Yedynovych ◽  
G. Boyko ◽  
N. Lyalina ◽  
...  

The article contains theoretical and experimental researches in the field of the preservation of flax raw material of high moisture content. In the article, factors that are worsening the quality of flax raw material, resulting in non-observance of agrotechnical and technological requirements of preparing, collecting, harvesting the stem material, adverse weather conditions and other factors, are considered. The objective of this paper is to study the influence of preservation agents’ concentrations and of hollow structure device on the quality of flax raw material during long-time storage. In the article, the influence of aqueous preservatives’ concentration, humidity, storage length on the quality of fibrous products, obtained as a result of processing stem material, is analyzed. The influence of the device of hollow structures, as an alternative to preservatives, on the storage process of bast crops stem material was evaluated. The method of flax retted straw storage is described, actions of the main factors influence on the strength of fibers are analyzed. It is demonstrated, that prolongation of flax raw material preservation time can be made by using preservatives without considerable wastes of quality.


2021 ◽  
Vol 4 ◽  
Author(s):  
Debomitra Dey ◽  
Jana K. Richter ◽  
Pichmony Ek ◽  
Bon-Jae Gu ◽  
Girish M. Ganjyal

The processing of agricultural products into value-added food products yields numerous by-products or waste streams such as pomace (fruit and vegetable processing), hull/bran (grain milling), meal/cake (oil extraction), bagasse (sugar processing), brewer's spent grain (brewing), cottonseed meal (cotton processing), among others. In the past, significant work in exploring the possibility of the utilization of these by-products has been performed. Most by-products are highly nutritious and can be excellent low-cost sources of dietary fiber, proteins, and bioactive compounds such as polyphenols, antioxidants, and vitamins. The amount of energy utilized for the disposal of these materials is far less than the energy required for the purification of these materials for valorization. Thus, in many cases, these materials go to waste or landfill. Studies have been conducted to incorporate the by-products into different foods in order to promote their utilization and tackle their environmental impacts. Extrusion processing can be an excellent avenue for the utilization of these by-products in foods. Extrusion is a widely used thermo-mechanical process due to its versatility, flexibility, high production rate, low cost, and energy efficiency. Extruded products such as direct-expanded products, breakfast cereals, and pasta have been developed by researchers using agricultural by-products. The different by-products have a wide range of characteristics in terms of chemical composition and functional properties, affecting the final products in extrusion processing. For the practical applications of these by-products in extrusion, it is crucial to understand their impacts on the qualities of raw material blends and extruded products. This review summarizes the general differences in the properties of food by-products from different sources (proximate compositions, physicochemical properties, and functional properties) and how these properties and the extrusion processing conditions influence the product characteristics. The discussion of the by-product properties and their impacts on the extrudates and their nutritional profile can be useful for food manufacturers and researchers to expand their applications. The gaps in the literature have been highlighted for further research and better utilization of by-products with extrusion processing.


Sign in / Sign up

Export Citation Format

Share Document